SI Session: Sept. 8th, 9th & 11th, 2008 Mondays: 3:00 PM – 4:30 PM Tuesdays: 1:30 PM – 3:00 PM Thursdays: 1:30 PM – 3:00 PM Room 1239 SNAD

Prof. McCurdy : Linear Algebra Fall 2008 SI Leader : Neil Jody

		3x + 2y - z = 0
[1]	Solve the following system.	2x - y + 2z = -2
		-2x + 5y - 3z = 9

[2] Express the vector $\begin{bmatrix} 2\\1\\7 \end{bmatrix}$ as a linear combination of the vectors $\begin{bmatrix} -1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix}$, and $\begin{bmatrix} 3\\1\\0 \end{bmatrix}$.

		[-7]		$\left\lceil 2\right\rceil$		[-1]]
[3]	Find the value of c that will make the vector	с	lie in the span of	1	and	1	
		4		2		0	

[4] Suppose that the RREF of a matrix A is $\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. Write the solution set of

the equation $A\vec{x} = \vec{0}$ in parametric vector form.

[5] Consider the following system of equations:

> y + 2z = 2-x +3x + y + z = -12x + 2y + cz = d

Determine the values of *c*,*d* that will insure that the system has

(a) exactly one solution(b) infinitely many solutions

(c) no solution

[6] Determine each set of vectors spans R^3 .

(a)
$$\begin{bmatrix} -2\\1\\0 \end{bmatrix}$$
, $\begin{bmatrix} 3\\-1\\3 \end{bmatrix}$ (b) $\begin{bmatrix} 1\\-1\\0 \end{bmatrix}$, $\begin{bmatrix} 2\\0\\1 \end{bmatrix}$, $\begin{bmatrix} 0\\2\\1 \end{bmatrix}$

(c)
$$\begin{bmatrix} 1\\ -1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ 0\\ 1\end{bmatrix}, \begin{bmatrix} 3\\ -1\\ 2\end{bmatrix}, \begin{bmatrix} 2\\ -2\\ 2\end{bmatrix}$$
 (d) $\begin{bmatrix} -1\\ -1\\ 2\end{bmatrix}, \begin{bmatrix} 3\\ 1\\ -1\\ 2\end{bmatrix}, \begin{bmatrix} 1\\ 4\\ 2\end{bmatrix}$

[7] Let
$$\vec{u} = \begin{bmatrix} 7\\2\\5 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 3\\1\\3 \end{bmatrix}$, and $\vec{w} = \begin{bmatrix} 6\\1\\0 \end{bmatrix}$. It can be shown that $3\vec{u} - 5\vec{v} - \vec{w} = \vec{0}$.

Use this fact (and no row operations) to find x_1 and x_2 that satisfy the equation

$$\begin{bmatrix} 7 & 3 \\ 2 & 1 \\ 6 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \\ 0 \end{bmatrix}.$$

[8] Write the solution set of the given homogeneous system in parametric vector form.

$$x_1 + 3x_2 - 5x_3 = 0$$
$$x_1 + 4x_2 - 8x_3 = 0$$
$$-3x_1 - 7x_2 + 9x_3 = 0$$

[9] Determine if the columns of the matrix form a linearly independent set. Justify each answer.

	-4	-3	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	[1	-3	3	-2
(a)	$ \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} $	4	(b) -3	7	-1	2	
	5	4	6		1	-4	3

[10] Let
$$\vec{v}_1 = \begin{bmatrix} 1 \\ -5 \\ -3 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} -2 \\ 10 \\ 6 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 2 \\ -9 \\ h \end{bmatrix}$$
, (a) for what values of *h* is \vec{v}_3 in

Span $\{\vec{v}_1, \vec{v}_2\}$, and (b) for what values of *h* is $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ linearly *dependent*? Justify each answer.