SI Session: Sept. $8^{\text {th }}, 9^{\text {th }} \& 11^{\text {th }}, 2008$
Mondays: 3:00 PM - 4:30 PM
Tuesdays: 1:30 PM - 3:00 PM
Thursdays: 1:30 PM - 3:00 PM
Room 1239 SNAD

$$
3 x+2 y-z=0
$$

[1] Solve the following system. $2 x-y+2 z=-2$

$$
-2 x+5 y-3 z=9
$$

[2] Express the vector $\left[\begin{array}{l}2 \\ 1 \\ 7\end{array}\right]$ as a linear combination of the vectors $\left[\begin{array}{r}-1 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]$, and $\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$.
[3] Find the value of c that will make the vector $\left[\begin{array}{r}-7 \\ c \\ -4\end{array}\right]$ lie in the span of $\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]$ and $\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$.
[4] Suppose that the RREF of a matrix A is $\left[\begin{array}{rrrr}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0\end{array}\right]$. Write the solution set of the equation $A \vec{x}=\overrightarrow{0}$ in parametric vector form.
[5] Consider the following system of equations:

$$
\begin{aligned}
-x+y+2 z & =2 \\
3 x+y+z & =-1 \\
2 x+2 y+c z & =d
\end{aligned}
$$

Determine the values of c, d that will insure that the system has
(a) exactly one solution
(b) infinitely many solutions
(c) no solution
[6] Determine each set of vectors spans R^{3}.
(a) $\left[\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}3 \\ -1 \\ 3\end{array}\right]$
(b) $\left[\begin{array}{r}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]$
(c) $\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{r}2 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{r}3 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{r}2 \\ -2 \\ 2\end{array}\right]$
(d) $\left[\begin{array}{r}-1 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{r}3 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 4 \\ 2\end{array}\right]$
[7] Let $\vec{u}=\left[\begin{array}{l}7 \\ 2 \\ 5\end{array}\right], \vec{v}=\left[\begin{array}{l}3 \\ 1 \\ 3\end{array}\right]$, and $\vec{w}=\left[\begin{array}{l}6 \\ 1 \\ 0\end{array}\right]$. It can be shown that $3 \vec{u}-5 \vec{v}-\vec{w}=\overrightarrow{0}$.
Use this fact (and no row operations) to find x_{1} and x_{2} that satisfy the equation

$$
\left[\begin{array}{ll}
7 & 3 \\
2 & 1 \\
6 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
6 \\
1 \\
0
\end{array}\right] .
$$

[8] Write the solution set of the given homogeneous system in parametric vector form.

$$
\begin{array}{r}
x_{1}+3 x_{2}-5 x_{3}=0 \\
x_{1}+4 x_{2}-8 x_{3}=0 \\
-3 x_{1}-7 x_{2}+9 x_{3}=0
\end{array}
$$

[9] Determine if the columns of the matrix form a linearly independent set. Justify each answer.
(a) $\left[\begin{array}{rrr}-4 & -3 & 0 \\ 0 & -1 & 4 \\ 1 & 0 & 3 \\ 5 & 4 & 6\end{array}\right]$
(b) $\left[\begin{array}{rrrr}1 & -3 & 3 & -2 \\ -3 & 7 & -1 & 2 \\ 0 & 1 & -4 & 3\end{array}\right]$
[10] Let $\vec{v}_{1}=\left[\begin{array}{r}1 \\ -5 \\ -3\end{array}\right], \vec{v}_{2}=\left[\begin{array}{r}-2 \\ 10 \\ 6\end{array}\right], \vec{v}_{3}=\left[\begin{array}{r}2 \\ -9 \\ h\end{array}\right]$, (a) for what values of h is \vec{v}_{3} in Span $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, and (b) for what values of h is $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ linearly dependent? Justify each answer.

