SI Session: October 09, 2008
Mondays: 3:00 PM - 4:30 PM
Tuesdays: 1:30 PM - 3:00 PM
Thursdays: 1:30 PM - 3:00 PM
Room 1239 SNAD

Prof. McCurdy : Linear Algebra Fall 2008
SI Leader : Neil Jody
[1] Compute each matrix sum or product if it is defined. If an expression is undefined, explain why.

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{ccc}
2 & 0 & -1 \\
4 & -5 & 2
\end{array}\right], \quad B=\left[\begin{array}{ccc}
7 & -5 & 1 \\
1 & -4 & -3
\end{array}\right], \quad C=\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right], \\
& D=\left[\begin{array}{cc}
3 & 5 \\
-1 & 4
\end{array}\right], E=\left[\begin{array}{c}
-5 \\
3
\end{array}\right]
\end{aligned}
$$

(a) $A+2 B$
(b) 3C-E
(c) CB
(d) EB
(e) DB
[2] Compute $A-5 I_{3}$ and $\left(5 I_{3}\right) A$, when $A=\left[\begin{array}{ccc}9 & -1 & 3 \\ -8 & 7 & -6 \\ -4 & 1 & 8\end{array}\right]$.
[3] Compute the product $A B$ in two ways: (a) by the definition, where $A \vec{b}_{1}$ and $A \vec{b}_{2}$ are computed separately, and (b) by the row-column rule for computing $A B$, when $A=\left[\begin{array}{rr}4 & -2 \\ -3 & 0 \\ 3 & 5\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 3 \\ 2 & -1\end{array}\right]$.
[4] Find the inverse of the following matrix without using a calculator:
$\left[\begin{array}{rrr}-1 & 2 & -3 \\ 2 & 1 & 0 \\ 4 & -2 & 5\end{array}\right]$
[5] Find all values of x and y that make the following matrix equation true, or demonstrate that no such x and y exist:

$$
\left[\begin{array}{rrr}
-8 & 4 & x \\
14 & -7 & 3
\end{array}\right]\left[\begin{array}{rr}
-5 & 3 \\
-12 & 9 \\
y & 7
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
2 & 0
\end{array}\right]
$$

[6] Determine if each statement is true or false.
(a) If A and B are invertible matrices, then so is $A B$.
(b) If A and B are invertible matrices, then so is $A+B$.
(c) If A^{2} is an invertible matrix, then so is A.
(d) If A, B, and C are matrices such that $A B=A C$, then $B=C$.
(e) If A and B are matrices such that $A B=O$, then $A=O$ or $B=O$.
[7] Let $\vec{u}=\left[\begin{array}{r}-2 \\ 3 \\ -4\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$. Compute $\vec{u}^{T} \vec{v}, \vec{v}^{T} \vec{u}, \vec{u} \vec{v}$, and $\vec{v} \vec{u}^{T}$.

