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[1] Let 2RV =  with the usual scalar multiplication and with vector addition defined 
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following axioms:  

 

 (a)  )()( wvuwvu
rrrrrr

++=++  for all wvu
rrr
,,  in V  

 (b) vsusvus
rrrr

+=+ )(  for all vu
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,  in V and s in R 

 (c) vtvsvts
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+=+ )(  for all ts,  in R and v in V 
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[2] Determine if each set is a subspace of 3R  under its usual operations. 
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[3] Let V be a vector space of dimension 4. Determine if each statement is true or 

false. 

 

 (a) Any set of 5 vectors in V must be linearly dependent. 

 (b) Any set of 5 vectors in V must span V 

 (c) Any set of 3 vectors in V must be linearly independent. 

(d) No set of 3 vectors in V can span V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[4] Let W  be the set of all vectors of the form shown, where a , b , and c  represent   
 arbitrary real numbers. In each case, either find a set S  of vectors that spans W  

 or give an example to show that W  is not a vector space. 
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[5] A matrix A is said to be an orthogonal matrix if IAAT = . Find a 22×  matrix 

(other than the identity matrix) that is orthogonal. 

 

 

 

 

 

 

 

 

 

[6] Find an explicit description of Nul A, by listing vectors that span the null space. 

 

(a) A
1 −6 4 0 

=      0   0 2 0 
    (b) 

1 5 4 3 1

0 1 2 1 0

0 0 0 0 0

A

− − 
 =       −          
      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[7] Either use an appropriate theorem to show that a given set , W , is a vector space, 

or find a specific example to the contrary. 
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(c) 

5

2
: , real

2 1

b d

b
b d

d

d

 −  
  
      +     

    (d) 

2

2 : , real

3 6

a b

a b a b

a b

 − +  
  −    
  −  

 

 

 

 

 

 

 

 

 

 

 

 

 

[8] Find A such that the given set is Col A. 
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[9] For the following matrices, (1) find k such that Nul A is a subspace of 
k

� , and  

 (2) find k such that Col A is a subspace of 
k

� . 

 

(a) 

7 2 0

2 0 5

0 5 7

5 7 2

A
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 −   − =       
   −   
 −   − 
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(b) [ ]1 3 9 0 5A =    −          −  

 

 

 

 

 

 

[10] Let 
1 3 5

0 1 4 2
A

  0 
=  − 

, find a nonzero vector in Nul A and a nonzero vector  

 in Col A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

[11] Let 
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[12] Determine if the set of polynomials { }5,432 ,12 222 ++−−++− xxxxxx is a 

linearly independent set in 
2P . Is it a basis for 2P ? Why or why not? 
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[14] Suppose that { }wvu ,,  is a basis for the vector space V. Determine if each of the  

 following sets of vectors is a basis for V. Justify all assertions. 

 

(a) { }wvuwvwuv +++− ,2,,  

(b) { }wvuvuwv 2,, ++−++  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[15] Let 

















−

−−

−

=

7345

1123

2312

A . 

 

(a) Find a basis for the null space of A. 

(b) Find a basis for the column space of A. 

(c) Find a basis for the row space of A. 
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