SI Session: October 20th,21st,23rd 2008 Mondays: 3:00 PM – 4:30 PM Tuesdays: 1:30 PM – 3:00 PM Thursdays: 1:30 PM – 3:00 PM Room 1239 SNAD

Prof. McCurdy : Linear Algebra Fall 2008 SI Leader : Neil Jody

- [1] Let $V = R^2$ with the usual scalar multiplication and with vector addition defined by $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + y_2 \\ x_2 + y_1 \end{bmatrix}$. Determine if *V* under these operations satisfies the following axioms:
 - (a) $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$ for all $\vec{u}, \vec{v}, \vec{w}$ in V
 - (b) $s(\vec{u} + \vec{v}) = s\vec{u} + s\vec{v}$ for all \vec{u}, \vec{v} in *V* and *s* in *R*
 - (c) $(s+t)\vec{v} = s\vec{v} + t\vec{v}$ for all s, t in R and v in V

[2] Determine if each set is a subspace of R^3 under its usual operations.

(a)
$$W = \left\{ \begin{bmatrix} a \\ a \\ a-1 \end{bmatrix} : a \in R \right\}$$
 (b) $W = \left\{ \begin{bmatrix} a \\ a+b \\ b \end{bmatrix} : a, b \in R \right\}$

- [3] Let *V* be a vector space of dimension 4. Determine if each statement is true or false.
 - (a) Any set of 5 vectors in V must be linearly dependent.
 - (b) Any set of 5 vectors in V must span V
 - (c) Any set of 3 vectors in V must be linearly independent.
 - (d) No set of 3 vectors in V can span V.

[4] Let W be the set of all vectors of the form shown, where a, b, and c represent arbitrary real numbers. In each case, either find a set S of vectors that spans W or give an example to show that W is *not* a vector space.

(a)
$$\begin{bmatrix} -a+1\\a-6b\\2b+a \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 4a+b\\0\\a+b+c\\c-2a \end{bmatrix}$$

[5] A matrix A is said to be an orthogonal matrix if $AA^T = I$. Find a 2×2 matrix (other than the identity matrix) that is orthogonal.

[6] Find an explicit description of Nul A, by listing vectors that span the null space.

Γ1	6	4	07		[1	5	-4	-3	1
(a) $A = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	-0	4	0	(b) $A =$	0	1	-2	1	0
	0	0 2	0_		0	0	0	0	0

[7] Either use an appropriate theorem to show that a given set, W, is a vector space, or find a specific example to the contrary.

(a)
$$\left\{ \begin{bmatrix} r \\ s \\ t \end{bmatrix} : 5r - 1 = s + 2t \right\}$$
 (b) $\left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : \begin{array}{c} a + 3b = c \\ b + a + c = d \\ d \end{bmatrix} \right\}$

(c)
$$\begin{cases} \begin{bmatrix} b-5d\\2b\\2d+1\\d \end{bmatrix} : b,d \text{ real} \end{cases}$$
(d)
$$\begin{cases} \begin{bmatrix} -a+2b\\a-2b\\3a-6b \end{bmatrix} : a,b \text{ real} \end{cases}$$

[8] Find A such that the given set is Col A.
$$\begin{cases} b-c\\ 2b+c+d\\ 5c-4d\\ d \end{cases} : b,c,d \text{ real} \end{cases}$$

[9] For the following matrices, (1) find k such that Nul A is a subspace of k, and (2) find k such that Col A is a subspace of k.

(a)
$$A = \begin{bmatrix} 7 & -2 & 0 \\ -2 & 0 & -5 \\ 0 & -5 & 7 \\ -5 & 7 & -2 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 1 & -3 & 9 & 0 & -5 \end{bmatrix}$$

[10] Let $A = \begin{bmatrix} 1 & 3 & 5 & 0 \\ 0 & 1 & 4 & -2 \end{bmatrix}$, find a nonzero vector in Nul A and a nonzero vector in Col A.

[11] Let
$$A = \begin{bmatrix} -8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4 \end{bmatrix}$$
 and $\vec{w} = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$. Determine if \vec{w} is in Col A.
Is \vec{w} in Nul A?

[12] Determine if the set of polynomials $\{x^2 - 2x + 1, 2x^2 + 3x - 4, -x^2 + x + 5\}$ is a linearly independent set in P_2 . Is it a basis for P_2 ? Why or why not?

[13] Let
$$S = \left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\1\\-2 \end{bmatrix}, \begin{bmatrix} 4\\3\\-4 \end{bmatrix}, \begin{bmatrix} 1\\2\\-2 \end{bmatrix} \right\}$$
, a subset of R^3 . Find the dimension of the span of *S*.

- [14] Suppose that $\{u, v, w\}$ is a basis for the vector space V. Determine if each of the following sets of vectors is a basis for V. Justify all assertions.
 - (a) $\{v, u w, v + 2w, u + v + w\}$
 - (b) $\{v+w, u+v, -u+v+2w\}$

[15] Let
$$A = \begin{bmatrix} 2 & -1 & 3 & 2 \\ 3 & -2 & 1 & -1 \\ -5 & 4 & 3 & 7 \end{bmatrix}$$
.

•

- (a) Find a basis for the null space of *A*.
- (b) Find a basis for the column space of A.
- (c) Find a basis for the row space of A.