SI Session: October $20^{\text {th }}, 21^{\text {st }}, 23^{\text {rd }} 2008$
Mondays: 3:00 PM - 4:30 PM
Tuesdays: 1:30 PM - 3:00 PM
Thursdays: 1:30 PM - 3:00 PM
Room 1239 SNAD

Prof. McCurdy : Linear Algebra
Fall 2008
SI Leader : Neil Jody
[1] Let $V=R^{2}$ with the usual scalar multiplication and with vector addition defined by $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{l}x_{1}+y_{2} \\ x_{2}+y_{1}\end{array}\right]$. Determine if V under these operations satisfies the following axioms:
(a) $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$ for all $\vec{u}, \vec{v}, \vec{w}$ in V
(b) $s(\vec{u}+\vec{v})=s \vec{u}+s \vec{v}$ for all \vec{u}, \vec{v} in V and s in R
(c) $(s+t) \vec{v}=s \vec{v}+t \vec{v}$ for all s, t in R and v in V
[2] Determine if each set is a subspace of R^{3} under its usual operations.
(a) $W=\left\{\left[\begin{array}{c}a \\ a \\ a-1\end{array}\right]: a \in R\right\}$
(b) $W=\left\{\left[\begin{array}{c}a \\ a+b \\ b\end{array}\right]: a, b \in R\right\}$
[3] Let V be a vector space of dimension 4. Determine if each statement is true or false.
(a) Any set of 5 vectors in V must be linearly dependent.
(b) Any set of 5 vectors in V must span V
(c) Any set of 3 vectors in V must be linearly independent.
(d) No set of 3 vectors in V can span V.
[4] Let W be the set of all vectors of the form shown, where a, b, and c represent arbitrary real numbers. In each case, either find a set S of vectors that spans W or give an example to show that W is not a vector space.
(a) $\left[\begin{array}{l}-a+1 \\ a-6 b \\ 2 b+a\end{array}\right]$
(b) $\left[\begin{array}{c}4 a+b \\ 0 \\ a+b+c \\ c-2 a\end{array}\right]$
[5] A matrix A is said to be an orthogonal matrix if $A A^{T}=I$. Find a 2×2 matrix (other than the identity matrix) that is orthogonal.
[6] Find an explicit description of Nul A, by listing vectors that span the null space.
(a) $A=\left[\begin{array}{rrrr}1 & -6 & 4 & 0 \\ 0 & 0 & 2 & 0\end{array}\right]$
(b) $A=\left[\begin{array}{rrrrr}1 & 5 & -4 & -3 & 1 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
[7] Either use an appropriate theorem to show that a given set, W, is a vector space, or find a specific example to the contrary.
(a) $\left\{\left[\begin{array}{l}r \\ s \\ t\end{array}\right]: 5 r-1=s+2 t\right\}$
(b) $\left\{\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]: \begin{array}{c}a+3 b=c \\ b+a+c=d\end{array}\right\}$
(c) $\left\{\left[\begin{array}{c}b-5 d \\ 2 b \\ 2 d+1 \\ d\end{array}\right]: b, d\right.$ real $\}$
(d) $\left\{\left[\begin{array}{c}-a+2 b \\ a-2 b \\ 3 a-6 b\end{array}\right]: a, b\right.$ real $\}$
[8] Find A such that the given set is Col A. $\left\{\begin{array}{c}2 b+c+d \\ 5 c-4 d \\ d\end{array}\right]: b, c, d$ real $\}$
[9] For the following matrices, (1) find k such that Nul A is a subspace of \square^{k}, and (2) find k such that Col A is a subspace of $\square{ }^{k}$.
(a) $A=\left[\begin{array}{rrr}7 & -2 & 0 \\ -2 & 0 & -5 \\ 0 & -5 & 7 \\ -5 & 7 & -2\end{array}\right]$
(b) $A=\left[\begin{array}{lllll}1 & -3 & 9 & 0 & -5\end{array}\right]$
[10] Let $A=\left[\begin{array}{cccc}1 & 3 & 5 & 0 \\ 0 & 1 & 4 & -2\end{array}\right]$, find a nonzero vector in Nul A and a nonzero vector in Col A .
[11] Let $A=\left[\begin{array}{ccc}-8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4\end{array}\right]$ and $\vec{w}=\left[\begin{array}{r}2 \\ 1 \\ -2\end{array}\right]$. Determine if \vec{w} is in Col A.
Is \vec{w} in Nul A?
[12] Determine if the set of polynomials $\left\{x^{2}-2 x+1,2 x^{2}+3 x-4,-x^{2}+x+5\right\}$ is a linearly independent set in P_{2}. Is it a basis for P_{2} ? Why or why not?
[13] Let $S=\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}3 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{c}4 \\ 3 \\ -4\end{array}\right],\left[\begin{array}{c}1 \\ 2 \\ -2\end{array}\right]\right\}$, a subset of R^{3}. Find the dimension of the span
\quad of S.
[14] Suppose that $\{u, v, w\}$ is a basis for the vector space V. Determine if each of the following sets of vectors is a basis for V. Justify all assertions.
(a) $\{v, u-w, v+2 w, u+v+w\}$
(b) $\{v+w, u+v,-u+v+2 w\}$
[15] Let $A=\left[\begin{array}{rrrr}2 & -1 & 3 & 2 \\ 3 & -2 & 1 & -1 \\ -5 & 4 & 3 & 7\end{array}\right]$.
(a) Find a basis for the null space of A.
(b) Find a basis for the column space of A.
(c) Find a basis for the row space of A.

