SI Session: October 14, 2008
Mondays: 3:00 PM - 4:30 PM
Tuesdays: 1:30 PM - 3:00 PM
Thursdays: 1:30 PM - 3:00 PM
Room 1239 SNAD

Prof. McCurdy : Linear Algebra Fall 2008
SI Leader : Neil Jody
[1] Determine which of the matrices are invertible. Use as few calculations as possible. Justify your answer.
(a) $\left[\begin{array}{rr}-4 & 6 \\ 6 & -9\end{array}\right]$
(b) $\left[\begin{array}{rrr}-7 & 0 & -4 \\ 3 & 0 & -1 \\ 2 & 0 & 9\end{array}\right]$
(c) $\left[\begin{array}{rrr}1 & -5 & -4 \\ 0 & 3 & 4 \\ -3 & 6 & 0\end{array}\right]$
(d) $\left[\begin{array}{cccc}1 & 3 & 7 & 4 \\ 0 & 5 & 9 & 6 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & 0 & 10\end{array}\right]$
[2] When is a square lower triangular matrix invertible? Justify your answer.
[3] Is it possible for a 5×5 to be invertible when its columns do not span \square^{5} ? Why or Why not?
[4] If C is 6×6 and the equation $C \vec{x}=\vec{v}$ is consistent for every \vec{v} in \square^{6}, is it possible that for some \vec{v}, the equation $C \vec{x}=\vec{v}$ has more than one solution? Why or Why not?
[5] The matrices A and B are said to commute if $A B=B A$. Find all matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ that commute with $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ (Note: there are infinitely many, so specify the form of these matrices).
[6] If $n \times n$ matrices E and F have the property that $E F=I$, then E and F commute. Explain why.
[7] If the equation $H \vec{x}=\vec{c}$ is inconsistent for some \vec{c} in \square^{n}, what can you say about the equation $H \vec{x}=\overrightarrow{0}$? Why?
[8] If L is $n \times n$ and the equation $L \vec{x}=\overrightarrow{0}$ has the trivial solution do the columns of L span \square^{n} ? Why?
[9] Explain why the columns of A^{2} span whenever the columns of A are linearly independent.
[10] Show that if $A B$ is invertible, so is B.
[11] If A is an $n \times n$ matrix and the transformation $\vec{x} \mapsto A \vec{x}$ is one-to-one, what else can you say about this transformation? Justify your answer.
[12] Suppose A is an $n \times n$ matrix with the property that the equation $A \vec{x}=\overrightarrow{0}$ has only the trivial solution. Without using the Invertible Matrix Theorem, explain directly why the equation $A \vec{x}=\vec{b}$ must have a solution for each \vec{b} in \square^{n}.
[13] T is a linear transformation from \square^{2} into \square^{2}. Show that T is invertible and find a formula for T^{-1}.
$T\left(x_{1}, x_{2}\right)=\left(6 x_{1}-8 x_{2},-5 x_{1}+7 x_{2}\right)$

