SI Session: Final Exam Review
Saturday, December $6^{\text {th }}$: 2:00 PM - 4:00 PM
Monday, December 8 th: 3:00 PM - 4:30 PM
Room 1239 SNAD
[1] Solve the following system. $\left\{\begin{array}{l}x_{1}+3 x_{2}-2 x_{3}=10 \\ 2 x_{1}+3 x_{2}+5 x_{3}=-1 \\ -x_{1}+2 x_{2}+4 x_{3}=-9\end{array}\right.$
[2] Express the vector $\left[\begin{array}{r}3 \\ -1 \\ -8\end{array}\right]$ as a linear combination of the vectors $\left[\begin{array}{r}3 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 1\end{array}\right]$, and $\left[\begin{array}{l}2 \\ 7 \\ 3\end{array}\right]$.
[3] Consider the linear transformation $T: \square^{3} \rightarrow \square^{3}$ defined by $T(\vec{x})=\left[\begin{array}{rrr}2 & 3 & 1 \\ 1 & 4 & -2 \\ 1 & 2 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$. Let $\vec{u}=\left[\begin{array}{r}-2 \\ -1 \\ 5\end{array}\right]$
(a) Find the image of T under \vec{u}
(b) Is \vec{u} in the range of T ?
[4] Suppose that the RREF of a matrix A is $\left[\begin{array}{rrrrr}1 & 0 & -2 & 0 & 4 \\ 0 & 1 & 3 & 0 & -1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
Write the solution set of the equation $A \vec{x}=\overrightarrow{0}$ in parametric vector form.
[5] Are the vectors $\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}4 \\ -2 \\ 2 \\ -1\end{array}\right]$, and $\left[\begin{array}{l}2 \\ 3 \\ 1 \\ 2\end{array}\right]$ linearly dependent or linearly
independent?(Justify your answer.)
[6] Do the vectors $\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{r}4 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 7\end{array}\right]$, and $\left[\begin{array}{r}1 \\ 1 \\ -8\end{array}\right] \operatorname{span} \square^{3}$. (Justify your answer.)
[7] Consider the linear transformation $T: \square^{2} \rightarrow \square^{3}$ defined by

$$
T(\vec{x})=\left[\begin{array}{ll}
1 & 4 \\
2 & 3 \\
1 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

(a) Is T one-to-one?
(b) Is T onto?
(Justify your answer.)
[8] Let $A=\left[\begin{array}{lll}0 & 2 & 5 \\ 1 & 1 & 2 \\ 2 & 3 & 6\end{array}\right]$.
(a) Calculate $2 A+A^{T}$.
(b) Calculate A^{-1}.
[9] Let $T: \square^{3} \rightarrow \square^{2}$ be defined by $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}x-z \\ 2 y\end{array}\right]$. Show that T is a linear transformation.
[10] Let $S=\{(a, b, 2 a+b) \mid a, b \in \square\}$. Prove that S is a subspace of \square^{3}.
[11] Let S be a set of all ordered pairs $\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$ with vector addition defined by $\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]+\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}u_{2}+v_{2} \\ u_{1}+v_{1}\end{array}\right]$ and scalar multiplication defined by $c\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]=\left[\begin{array}{c}c u_{1} \\ u_{2}\end{array}\right]$.

Determine whether S satisfies Axiom $8:(c+d) \vec{u}=c \vec{u}+d \vec{u}$
[12] Decide whether the polynomials $p_{1}=x^{2}-2 x+3, p_{2}=2 x^{2}-5 x+2$, and $p_{3}=2 x^{2}-3 x+10$ are linearly independent in P_{2}.
[13] Suppose A is a 3×5 matrix, and the column space of A is 2 -dimensional.
(a) What is the rank of A ?
(b) What is the dimension of the row space of A ?
(c) What is the dimension of the null space of A ?
(d) What is the dimension of the null space of A^{T} ?
(e) Is the row space of A a subspace of \square^{3} or \square^{5} ?
[14] Consider the vectors $\vec{v}_{1}=\left[\begin{array}{r}1 \\ -3 \\ 4 \\ 0\end{array}\right], \vec{v}_{2}=\left[\begin{array}{r}-2 \\ 6 \\ -8 \\ 0\end{array}\right], \vec{v}_{3}=\left[\begin{array}{r}3 \\ 2 \\ -5 \\ 1\end{array}\right], \vec{v}_{4}=\left[\begin{array}{c}5 \\ -4 \\ 3 \\ 1\end{array}\right]$.
Let $V=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$
(a) Find a basis for V.
(b) What is the dimension of V ?
(c) Is $\vec{w}=\left[\begin{array}{r}1 \\ -25 \\ 38 \\ -2\end{array}\right]$ a vector in $V=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$?
[15] Let $A=\left[\begin{array}{llll}0 & 1 & 2 & 1 \\ 1 & 0 & 3 & 1 \\ 1 & 1 & 5 & 2\end{array}\right]$. Find a basis for the column space of A.
[16] Find the characteristic polynomial, eigenvalues, and a basis for each eigenspace for $A=\left[\begin{array}{ll}4 & 2 \\ 2 & 7\end{array}\right]$.
[17] Find the determinant of $\left[\begin{array}{cccc}8 & 3 & 0 & 5 \\ 5 & 3 & 1 & -2 \\ 2 & 2 & 0 & 5 \\ 12 & 6 & 2 & -4\end{array}\right]$.
[18] Consider the vectors $\vec{v}_{1}=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}-5 \\ -2 \\ 1\end{array}\right]$.
(a) Verify that the vectors form an orthogonal set.
(b) Write the vector $\vec{w}=\left[\begin{array}{c}-14 \\ -6 \\ 8\end{array}\right]$ as a linear combination of \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3}.
[19] Diagonalize the matrix $A=\left[\begin{array}{lll}2 & 1 & 2 \\ 0 & 3 & 2 \\ 0 & 1 & 4\end{array}\right]$ (if possible).

