SI Session: Exam III Review
Mondays: 3:00 PM - 4:30 PM
Tuesdays: 1:30 PM - 3:00 PM
Thursdays: 1:30 PM - 3:00 PM
Room 1239 SNAD

Prof. McCurdy : Linear Algebra Fall 2008
SI Leader : Neil Jody
[1] Find the characteristic polynomial, eigenvalues, and a basis for each eigenspace for $A=\left[\begin{array}{ll}4 & 2 \\ 2 & 7\end{array}\right]$.
[2] Find the determinant of $\left[\begin{array}{cccc}8 & 3 & 0 & 5 \\ 5 & 3 & 1 & -2 \\ 2 & 2 & 0 & 5 \\ 12 & 6 & 2 & -4\end{array}\right]$.
[3] Answer the following:
(a) How can you tell whether a matrix is diagonalizable?
(b) Suppose $\lambda=5$ is an eigenvalue of the 5×5 matrix A with a basis consisting of 3 eigenvectors associated with the eigenspace E_{5}. What are the possibilities for the algebraic multiplicity of $\lambda=5$?
(c) What is a unit vector?
[4] Consider the vectors $\vec{v}_{1}=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}-5 \\ -2 \\ 1\end{array}\right]$.
(a) Verify that the vectors form an orthogonal set.
(b) Write the vector $\vec{w}=\left[\begin{array}{c}-14 \\ -6 \\ 8\end{array}\right]$ as a linear combination of \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3}.
[5] Suppose that A is a 3×3 matrix and $\operatorname{det} A=5$. Find the determinant of each of the following:
(a) the matrix obtained by exchanging the first and third rows of A.
(b) A^{-1}
(c) 2 A
[6] The number $\lambda=3$ is an eigenvalue of the matrix $A=\left[\begin{array}{ccc}2 & -2 & 3 \\ -2 & -1 & 6 \\ 2 & 4 & -3\end{array}\right]$.
Find a basis for the corresponding eigenspace.
[7] Consider the following subspace of $\square^{3}: V=\operatorname{Span}\left\{\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]\right\}$. Find a basis for V^{\perp}.
[8] Let $\vec{u}_{1}=\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}-1 \\ -3 \\ 3\end{array}\right], W=\operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$, and $\vec{y}=\left[\begin{array}{c}14 \\ -38 \\ -8\end{array}\right]$. Write \vec{y} as the sum of a vector in W and a vector orthogonal to W.
[9] Diagonalize the matrix $A=\left[\begin{array}{lll}2 & 1 & 2 \\ 0 & 3 & 2 \\ 0 & 1 & 4\end{array}\right]$.

