SI Session: Exam II Review
Mondays: 3:00 PM - 4:30 PM
Tuesdays: 1:30 PM - 3:00 PM
Thursdays: 1:30 PM - 3:00 PM
Room 1239 SNAD
[1] Let $A=\left[\begin{array}{lll}0 & 2 & 5 \\ 1 & 1 & 2 \\ 2 & 3 & 6\end{array}\right]$.
(a) Calculate $2 A+A^{T}$.
(b) Calculate A^{-1}.
(b) Calal ${ }^{-1}$

Prof. McCurdy : Linear Algebra Fall 2008
SI Leader : Neil Jody
[2] Let $T: \square^{3} \rightarrow \square^{2}$ be defined by $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}x-z \\ 2 y\end{array}\right]$. Show that T is a linear transformation.
[3] Let $A=\left[\begin{array}{ll}2 & x \\ 3 & 5\end{array}\right]$ and $B=\left[\begin{array}{cc}-3 & 5 \\ 4 & 1\end{array}\right]$. For what value of x will $A B=\left[\begin{array}{ll}38 & 21 \\ 11 & 20\end{array}\right]$
[4] Let $S=\{(a, b, 2 a+b) \mid a, b \in \square\}$. Prove that S is a subspace of \square^{3}.
[5] Let S be a set of all ordered pairs $\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$ with vector addition defined by

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
u_{2}+v_{2} \\
u_{1}+v_{1}
\end{array}\right] \text { and scalar multiplication defined by } c\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
c u_{1} \\
u_{2}
\end{array}\right] .
$$

Determine whether S satisfies Axiom $8:(c+d) \vec{u}=c \vec{u}+d \vec{u}$
[6] Decide whether the polynomials $p_{1}=x^{2}-2 x+3, p_{2}=2 x^{2}-5 x+2$, and $p_{3}=2 x^{2}-3 x+10$ are linearly independent in P_{2}.
[7] Suppose A is a 3×5 matrix, and the column space of A is 2 -dimensional.
(a) What is the rank of A ?
(b) What is the dimension of the row space of A ?
(c) What is the dimension of the null space of A ?
(d) What is the dimension of the null space of A^{T} ?
(e) Is the row space of A a subspace of \square^{3} or \square^{5} ?
[8] Consider the vectors $\vec{v}_{1}=\left[\begin{array}{r}1 \\ -3 \\ 4 \\ 0\end{array}\right], \vec{v}_{2}=\left[\begin{array}{r}-2 \\ 6 \\ -8 \\ 0\end{array}\right], \vec{v}_{3}=\left[\begin{array}{r}3 \\ 2 \\ -5 \\ 1\end{array}\right], \vec{v}_{4}=\left[\begin{array}{c}5 \\ -4 \\ 3 \\ 1\end{array}\right]$.
Let $V=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$
(a) Find a basis for V.
(b) What is the dimension of V ?
(c) Is $\vec{w}=\left[\begin{array}{r}1 \\ -25 \\ 38 \\ -2\end{array}\right]$ a vector in $V=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$?
[9] Let $A=\left[\begin{array}{llll}0 & 1 & 2 & 1 \\ 1 & 0 & 3 & 1 \\ 1 & 1 & 5 & 2\end{array}\right]$. Find a basis for the column space of A.
[10] Let $T: \square^{3} \rightarrow \square^{2}$ be defined by $T(\vec{x})=\left[\begin{array}{ccc}-2 & 5 & 6 \\ 1 & 0 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$.
Find a basis for the kernel of T.
[11] Give an example of a set of vectors that span \square^{3} but which are not linearly independent in \square^{3}.

