SI Session: Exam I Review
Mondays: 3:00 PM - 4:30 PM
Tuesdays: 1:30 PM - 3:00 PM
Thursdays: 1:30 PM - 3:00 PM
Room 1239 SNAD

Prof. McCurdy : Linear Algebra Fall 2008
SI Leader : Neil Jody
[1] Solve the following system. $\left\{\begin{array}{l}x_{1}+3 x_{2}-2 x_{3}=10 \\ 2 x_{1}+3 x_{2}+5 x_{3}=-1 \\ -x_{1}+2 x_{2}+4 x_{3}=-9\end{array}\right.$
[2] Express the vector $\left[\begin{array}{r}3 \\ -1 \\ -8\end{array}\right]$ as a linear combination of the vectors $\left[\begin{array}{r}3 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 1\end{array}\right]$, and $\left[\begin{array}{l}2 \\ 7 \\ 3\end{array}\right]$.
[3] Consider the linear transformation $T: \square^{3} \rightarrow \square^{3}$ defined by $T(\vec{x})=\left[\begin{array}{rrr}2 & 3 & 1 \\ 1 & 4 & -2 \\ 1 & 2 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$. Let $\vec{u}=\left[\begin{array}{r}-2 \\ -1 \\ 5\end{array}\right]$
(a) Find the image of T under \vec{u}
(b) Is \vec{u} in the range of T ?
[4] Suppose that the RREF of a matrix A is $\left[\begin{array}{rrrrr}1 & 0 & -2 & 0 & 4 \\ 0 & 1 & 3 & 0 & -1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
Write the solution set of the equation $A \vec{x}=\overrightarrow{0}$ in parametric vector form.
[5] Are the vectors $\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}4 \\ -2 \\ 2 \\ -1\end{array}\right]$, and $\left[\begin{array}{l}2 \\ 3 \\ 1 \\ 2\end{array}\right]$ linearly dependent or linearly
independent?(Justify your answer.)
[6] Do the vectors $\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{r}4 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 7\end{array}\right]$, and $\left[\begin{array}{r}1 \\ 1 \\ -8\end{array}\right] \operatorname{span} \square^{3}$. (Justify your answer.)
[7] Consider the linear transformation $T: \square^{2} \rightarrow \square^{3}$ defined by $T(\vec{x})=\left[\begin{array}{ll}1 & 4 \\ 2 & 3 \\ 1 & 6\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
(a) Is T one-to-one?
(b) Is T onto?
(Justify your answer.)
[8] Let $\vec{x}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $\vec{y}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$. Give an example of a nonzero vector which is in the span of \vec{x} and \vec{y}.
[9] Find a value c so the system of equations $\left\{\begin{array}{c}x_{1}+x_{2}=2 \\ -3 x_{1}+c x_{2}=-6 \\ 2 x_{1}+x_{2}=7\end{array}\right.$ will be consistent.
[10] Describe geometrically what each transformation does to a vector in R^{2}.
(a) $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
(b) $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{rr}-3 & 0 \\ 0 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$

