SI Session: March $9^{\text {th }}, 10^{\text {th }}, \& 11^{\text {th }}, 2009$
Mondays: \quad 4:50 PM - 6:20 PM Tuesdays: $\quad 1: 30 \mathrm{PM}-3: 00 \mathrm{PM}$ Wednesdays: 4:50 PM - 6:20 PM Room 1245 SNAD

Prof. Stockton : Calculus III
Spring 2009
SI Leader : Neil Jody
[1] Find the directional derivative of the function at P in the direction of \vec{v}.
(a) $g(x, y)=\arccos x y, P(1,0), \vec{v}=\hat{i}+5 \hat{j}$
(b) $h(x, y)=e^{-\left(x^{2}+y^{2}\right)}, P(0,0), \vec{v}=\hat{i}+\hat{j}$
(c) $h(x, y, z)=x y z, P(2,1,1), \vec{v}=\langle 2,1,2\rangle$
[2] Find the directional derivative of the function at P in the direction of Q.
(a) $f(x, y)=\cos (x+y), P(0, \pi), Q\left(\frac{\pi}{2}, 0\right)$
(b) $g(x, y, z)=x y e^{z}, P(2,4,0), Q(0,0,0)$
[3] Find the direction of maximum increase of the function at the given point.
(a) $g(x, y)=y e^{-x^{2}},(0,5)$
(b) $w=x y^{2} z^{2},(2,1,1)$
[4] The surface of a mountain is modeled by the equation $h(x, y)=5000-0.001 x^{2}-0.004 y^{2}$. A mountain climber is at the point $(500,300,4390)$. In what direction should the climber move in order to ascend at the greatest rate?
[5] A ground-dwelling cold hairy spider wants to get warm. The temperature at the point (x, y) is given by $T(x, y)=x^{2}-x y+2 y^{2}$ (degrees Fahrenheit). If the spider is at the point $(2,3)$, in which direction should it move to increase its temperature the fastest?
[6] At time $t=0$ (seconds), a particle is ejected from the surface $x^{2}+y^{2}-z^{2}=-1$ at the point $(1,1, \sqrt{3})$ in a direction normal to the surface at a speed of 10 units per second. When and where does the particle cross the $x y$-plane?
[7] Find an equation of the tangent plane at the given point.
(a) $z=x^{2}-2 x y+y^{2},(1,2,1)$
(b) $x=y(2 z-3),(4,4,2)$
[8] Find an equation of the plane tangent to the surface $x y z-4 x z^{3}+y^{3}=10$ at the point $(-1,2,1)$. Then find the angle between this tangent plane and the $x y$-plane.
[9] Find the directional derivative of the function $f(x, y, z)=3 x z-2 x y^{2}$ at the point $(-1,1,2)$ in the direction from $(-1,1,2)$ to $(1,3,3)$.
[10] Let $f(x, y)=\sqrt{x^{2}+y}$. Find an equation of the plane tangent to the graph of f at the point $(-1,3,2)$.
[11] Find an equation of the tangent plane to the surface at the given point.
(a) $z=\arctan \left(\frac{y}{x}\right),\left(1,1, \frac{\pi}{4}\right)$
[13] Find the gradient and the direction of maximum decrease at the given point.
(a) $z=e^{-x} \cos y,\left(0, \frac{\pi}{4}\right)$
(b) $z=\frac{x^{2}}{x-y},(2,1)$
[14] Find an equation of the tangent plane and parametric equations of the line normal to the surface at the given point.
(a) $z=-9+4 x-6 y-x^{2}-y^{2},(2,-3,4)$
(b) $z=\sqrt{9-x^{2}-y^{2}},(1,2,2)$
[15] Find the critical points of the following functions.
(a) $f(x, y)=x^{3}-3 x y+y^{2}$
(b) $f(x, y)=2 x^{2}+6 x y+9 y^{2}+8 x+14$
(c) $f(x, y)=x y+\frac{1}{x}+\frac{1}{y}$

