SI Session: March $23^{\text {rd }}, 24^{\text {th }}, \& 25^{\text {th }}, 2009$
Mondays: \quad 4:50 PM - 6:20 PM
Tuesdays: $\quad 1: 30 \mathrm{PM}-3: 00 \mathrm{PM}$
Wednesdays: 4:50 PM - 6:20 PM
Room 1245 SNAD

Prof. Stockton : Calculus III
Spring 2009
SI Leader : Neil Jody
[1] Find all points on the surface $x y-2 x+z^{2}=8$ at which the plane tangent to the surface is parallel to the plane with equation $x+y-2 z=3$.
[2] Find the absolute extrema of the function over the region R. In each case, R contains the boundaries.
(a) $f(x, y)=(2 x-y)^{2}$
R : The triangular region in the $x y$-plane with vertices $(2,0),(0,1)$, and $(1,2)$.
(b) $f(x, y)=x^{2}-4 x y+5, R=\{(x, y): 0 \leq x \leq 4,0 \leq y \leq \sqrt{x}\}$

(c) $f(x, y)=\frac{4 x y}{\left(x^{2}+1\right)\left(y^{2}+1\right)}, R=\left\{(x, y): x \geq 0, y \geq 0, x^{2}+y^{2} \leq 1\right\}$

[3] For each of the following functions, find all local extrema and saddle points.
(a) $f(x, y)=x^{3}-4 x y+2 y^{2}-1$
(b) $g(x, y)=x^{2}-4 x y+y^{3}+4 y$
[5] Find the maximum and minimum values of the function $g(x, y)=x^{2}+y^{2}-x-y+1$ on the unit disk $x^{2}+y^{2} \leq 1$.

[6] The function $f(x, y, z)=2 x^{2}+y^{2}+3 z^{2}$ has a minimum value on the plane $2 x-3 y+4 z=49$. Find this minimum value.
[7] A spider living in a two-dimensional world finds itself in a toxic environment. The toxicity at (x, y) is given by the function $T(x, y)=4 x^{2}-4 x y+y^{2}$.
(a) If the spider is at the point $(-2,1)$, in which direction should it move in order to lower the toxicity the fastest?
(b) Use Lagrange multipliers to determine the points along the parabola $y=x^{2}$ at which the toxicity is the lowest.
[8] Use Lagrange multipliers to find the maximum value of the function $f(x, y, z)=2 x y+3 z^{2}$ on the sphere $x^{2}+y^{2}+z^{2}=4$.

