SI Session: January 26th & 28th, 2008 Mondays: 4:50 PM – 6:20 PM Tuesdays: 1:30 PM – 3:00 PM Wednesdays: 4:50 PM – 6:20 PM Room 1245 SNAD

Prof. Stockton : Calculus III Spring 2009 SI Leader : Neil Jody

[1] Find the vectors \vec{u} and \vec{v} whose initial and terminal points are given. Show that are

 \vec{u} and \vec{v} equivalent.

(a)
$$\vec{u}:(-4,0),(1,8)$$

 $\vec{v}:(2,-1),(7,7)$

(b)
$$\vec{u}:(-4,-1),(11,-4)$$

 $\vec{v}:(10,13),(25,10)$

[2] Find the vector \vec{v} where $\vec{u} = \langle 2, -1 \rangle$ and $\vec{w} = \langle 1, 2 \rangle$. Illustrate the vector operations geometrically.

(a) $\vec{v} = \vec{u} + \vec{w}$

(b) $\vec{v} = 5\vec{u} - 3\vec{w}$

[3] Find the following:
$$\|\vec{u}\|$$
, $\|\vec{v}\|$, $\|\vec{u} + \vec{v}\|$, $\|\frac{\vec{u}}{\|\vec{u}\|}\|$, $\|\frac{\vec{v}}{\|\vec{v}\|}\|$, and $\|\frac{\vec{u} + \vec{v}}{\|\vec{u} + \vec{v}\|}\|$.

(a)
$$\vec{u} = \langle 0, 1 \rangle$$
$$\vec{v} = \langle 3, -3 \rangle$$

[4] Find a unit vector (1) parallel to and (2) normal to the graph of f(x) at the given point.

(a)
$$f(x) = \sqrt{25 - x^2}$$
, (3,4)

(b)
$$f(x) = \tan x, \left(\frac{\pi}{4}, 1\right)$$

[5] Let $\vec{u}_0 = \langle x_0, y_0 \rangle$, $\vec{u} = \langle x, y \rangle$, and c > 0. Describe the set of all points P(x, y) such that $\|\vec{u} - \vec{u}_0\| = c$.

- [6] Find the coordinates of the point.
 - (a) The point is located seven units in front of the *yz*-plane, two units to the left of the *xz*-plane, and one unit below the *xy*-plane.
 - (b) The point is located in the *yz*-plane, three units to the right of the *xz*-plane, and and two units above the *xy*-plane.

- [7] What is the *x*-coordinate of any point in the *yz*-plane.
- [8] Find the distance between the given points.

(a)
$$(-2,3,2)$$
, $(2,-5,-2)$

(b)
$$(2,2,3)$$
, $(4,-5,6)$

[9] Write the equation of the sphere in standard form. State the center and the radius.

(a)
$$x^2 + y^2 + z^2 + 9x - 2y + 10z + 19 = 0$$

[10] Find the vector \vec{v} with magnitude $\sqrt{5}$ and direction of $\vec{u} = \langle -4, 6, 2 \rangle$.

[11] Find the angle θ between the vectors.

(a)
$$\vec{u} = 3\hat{i} + 2\hat{j} + \hat{k}$$
$$\vec{v} = 2\hat{i} - 3\hat{j}$$

(b)
$$\vec{u} = 2\hat{i} - 3\hat{j} + \hat{k}$$

 $\vec{v} = \hat{i} - 2\hat{j} + \hat{k}$

[12] Determine whether \vec{u} and \vec{v} are orthogonal, parallel, or neither.

(a)
$$\vec{u} = -2\hat{i} + 3\hat{j} - \hat{k}$$
$$\vec{v} = 2\hat{i} + \hat{j} - \hat{k}$$

(b)
$$\vec{u} = \langle \cos\theta, \sin\theta, -1 \rangle$$
$$\vec{v} = \langle \sin\theta, -\cos\theta, 0 \rangle$$

[13] Find the projection of \vec{u} onto \vec{v} and the vector component of \vec{u} orthogonal to \vec{v}

(a)
$$\vec{u} = \langle 2, -3 \rangle$$

 $\vec{v} = \langle 3, 2 \rangle$
 $\vec{u} = \langle 1, 0, 4 \rangle$
 $\vec{v} = \langle 3, 0, 2 \rangle$

.

[14] Find $\vec{u} \times \vec{v}$ and show that it is orthogonal to both \vec{u} and \vec{v} .

$$\vec{u} = \langle -10, 0, 6 \rangle$$
(a) $\vec{v} = \langle 7, 0, 0 \rangle$
(b) $\vec{u} = \hat{i} + 6\hat{j}$
(c) $\vec{v} = -2\hat{i} + \hat{j} + \hat{k}$

[15] Verify that the points are the vertices of a parallelogram, and find its area. (2,-3,1), (6,5,-1), (3,-6,4), (7,2,2)

[16] Find the area of the triangle with the given vertices: (1,2,0), (-2,1,0), (0,0,0)