SI Session: February $9^{\text {th }}, 10^{\text {th }} \& 11^{\text {th }}, 2009$
Mondays: \quad 4:50 PM - 6:20 PM
Tuesdays: $\quad 1: 30 \mathrm{PM}-3: 00 \mathrm{PM}$
Wednesdays: 4:50 PM - 6:20 PM
Room 1245 SNAD

Prof. Stockton : Calculus III
Spring 2009
SI Leader : Neil Jody
[1] Find an equation of the plane that contains the following lines:

$$
l_{1}: x=t, y=2-t, z=2+3 t \text { and } l_{2}: x=1+4 t, y=1, z=5+2 t
$$

[2] Find the distance from the point $(1,2,3)$ to the plane $x+y-2 z=1$.
[3] Find an equation of the plane containing the points $(2,1,1),(-3,1,-2),(4,-5,-1)$.
[4] The planes $2 x+3 y-z=2$ and $x-y+3 z=-1$ intersect in a line.
Find parametric equations for this line.
[5] Find an equation of the plane containing the point $(-1,1,4)$ and orthogonal to the line given by $x=1+2 t, y=3-t, z=8+3 t$.
[6] Find an equation of the plane which contains the points $(1,1,-3)$ and $(2,-1,-2)$ and is perpendicular to the plane given by $2 x-3 y-z=6$.
[7] Find the distance between the point $(1,2,3)$ and the line with parametric equations $x=1+t, y=1-t, z=2 t$.
[8] Match each equation with the surface it describes.
\qquad $x^{2}=2 y^{2}+2 z^{2}$
\qquad

$$
5 x^{2}-4 y^{2}+15 z^{2}=-4
$$

$$
z=x^{2}+4 y^{2}
$$

$$
3 z=x^{2}-y^{2}
$$

$$
y^{2}-x^{2}+z^{2}=1
$$

[9] Represent the plane curve by a vector-valued function. (There are many correct answers.)
(a) $2 x-3 y+5=0$
(b) $y=4-x^{2}$
(c) $(x-2)^{2}+y^{2}=4$
(d) $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
[10] Evaluate the limit.
(a) $\lim _{t \rightarrow+\infty}\left\langle\frac{t^{2}+1}{3 t^{2}+2}, \frac{1}{t}\right\rangle$
(b) $\lim _{t \rightarrow 0}\left(e^{t} \hat{i}+\frac{\sin t}{t} \hat{j}+e^{-t} \hat{k}\right)$
(c) $\lim _{t \rightarrow 1}\left(\sqrt{t} \hat{i}+\frac{\ln t}{t^{2}-1} \hat{j}+2 t^{2} \hat{k}\right)$
(d) $\lim _{t \rightarrow+\infty}\left(e^{-t} \hat{i}+\frac{1}{t} \hat{j}+\frac{t}{t^{2}+1} \hat{k}\right)$
[11] A particle travels along the curve given by $\vec{r}(t)=(2 \cos t, 2 \sin t, t)$ where $0 \leq t \leq 2 \pi$.
(a) Find the length of the curve traced by the particle.
(b) Find parametric equations for the line tangent to the curve at the point $(-2,0, \pi)$.
(c) At what time will the particle be exactly 7 units from the origin?
(d) Show that the velocity and acceleration of the particle are always orthogonal.
(e) At what time will the particle intersect the surface $z+1=x^{2}+y^{2}$?

