SI Session: February $2^{\text {nd }} \& 4^{\text {th }}, 2009$
Mondays: \quad 4:50 PM - 6:20 PM
Tuesdays: $\quad 1: 30 \mathrm{PM}-3: 00 \mathrm{PM}$
Wednesdays: 4:50 PM - 6:20 PM
Room 1245 SNAD

Prof. Stockton : Calculus III
Spring 2009
SI Leader : Neil Jody
[1] Let $\vec{u}=2 \hat{i}+5 \hat{j}+\vec{k}$ and $\vec{v}=3 \hat{i}-\hat{j}+7 \hat{k}$.
(a) Find the vector which has the same length as \vec{u} and the opposite direction as \vec{v}.
(b) Determine if the vector $\vec{w}=\hat{i}+2 \hat{k}$ lies in the plane of \vec{u} and \vec{v}.
(c) Find all unit vectors which are orthogonal to both \vec{u} and \vec{v}.
(d) Find the angle between \vec{u} and \vec{v}.
[2] Find the vector that has length 3 and has the opposite direction as $\langle-1,2,4\rangle$.
[3] Let $\vec{u}=\langle-1,4,-2\rangle$. Find a vector \vec{v} such that the area of the parallelogram spanned by \vec{u} and \vec{v} is 10 .
[4] Find a set of parametric equations of the described line.
(a) The line that passes through the point $(-4,5,2)$ and is parallel to the $x y$-plane and the $y z$-plane.
(b) The line that passes through the point $(-4,5,2)$ and is perpendicular to the plane given by $-x+2 y+z=5$.
(c) The line that passes through the point $(-1,4,-3)$ and is parallel to $\vec{v}=5 \hat{i}-\hat{j}$.
(d) The line that passes through the point $(-6,0,8)$ and is parallel to the line $x=5-2 t, y=2 t-4, z=0$.
[5] Find an equation of the described plane.
(a) The plane that passes through $(2,3,-2),(3,4,2)$, and $(1,-1,0)$.
(b) The plane that passes through the point $(1,2,3)$ and parallel to the $y z$-plane.
(c) The plane that passes through the points $(3,2,1)$ and $(3,1,-5)$ and is perpendicular to the plane $6 x+7 y+2 z=10$.
(d) The plane that passes through the points $(4,2,1)$ and $(-3,5,7)$ and is parallel to the z-axis.
[6] Determine all values of c such that the angle between the vectors $\vec{u}=\langle-1,0,1\rangle$ and $\vec{v}=\langle c, 3,1\rangle$ is 45°.
[7] Find parametric equations for the line through $(3,1,-2)$ that intersects and is perpendicular to the line given by: $x=-1+t, y=-2+t, z=-1+t$.
[8] Find an equation of the plane that contains the following lines:

$$
l_{1}: x=t, y=2-t, z=2+3 t \text { and } l_{2}: x=1+4 t, y=1, z=5+2 t
$$

[9] Find the distance from the point $(1,2,3)$ to the plane $x+y-2 z=1$.
[10] (a) If two nonzero vectors are parallel, what can be said about the angle between them?
(b) Suppose that \vec{u} and \vec{v} are nonzero vectors in space satisfying $\|\vec{u} \times \vec{v}\|=0$. Show that \vec{u} and \vec{v} must be parallel.
[11] Determine if the vectors $\langle-1,1,2\rangle,\langle 2,1,-1\rangle$ and $\langle 4,-1,-5\rangle$ lie in a common plane.
[12] Determine a and b so that the points $(1,-1,1),(2,-5,-1)$ and $(-1, a, b)$ lie on the same line.
[13] Simplify:
(a) $\frac{6 y\left(4 x^{2}+5 y^{2}\right)^{1 / 2}-24 x^{2} y\left(4 x^{2}+5 y^{2}\right)^{-1 / 2}}{4 x^{2}+5 y^{2}}$
(b) $\frac{(3 x+2)^{\frac{1}{2}}\left(\frac{1}{3}\right)(2 x+3)^{-\frac{2}{3}}(2)-(2 x+3)^{\frac{1}{3}}\left(\frac{1}{2}\right)(3 x+2)^{-\frac{1}{2}}(3)}{3 x+2}$
(c) $\frac{1}{2}\left[w^{3}(9 w+1)^{5}\right]^{-\frac{1}{2}}\left[w^{3}(5)(9 w+1)^{4}(9)+(9 w+1)^{5}\left(3 w^{2}\right)\right]$

