SI Session: April 13th,14th & 15th, 2009 Mondays: 4:50 PM – 6:20 PM Tuesdays: 1:30 PM – 3:00 PM Wednesdays: 4:50 PM – 6:20 PM Room 1245 SNAD

Prof. Stockton : Calculus III Spring 2009 SI Leader : Neil Jody

- [1] Sketch the solid whose volume is given by the iterated integral and rewrite the integral using the indicated order of integration.
- (a) $\int_0^3 \int_0^{\sqrt{9-x^2}} \int_0^{6-x-y} dz \, dy \, dx$; rewrite using the order $dz \, dx \, dy$.

(b)
$$\int_0^2 \int_{2x}^4 \int_0^{\sqrt{y^2 - 4x^2}} dz \, dy \, dx$$
; rewrite using the order $dx \, dy \, dz$.

[2] Express as an triple iterated integral the volume of the solid in the first octant bounded by the coordinate axes and the graphs of $z + x^2 = 4$ and y + z = 4.

[3] A thin plate has the shape of the region in the *xy*-plane bounded by the graphs of y = 2, y = -x + 2, $y = \frac{1}{2}x - 1$. If the density at (x,y) is given by $\delta(x,y) = x^2 + y^2 + 1$, set up an iterated integral which gives the mass of the plate.

[4] Find an equation in cylindrical coordinates for the equation given in rectangular coordinates.

(a)
$$x = 4$$
 (b) $z = x^2 + y^2 - 2$

(c)
$$x^2 + y^2 = 8x$$
 (d) $x^2 + y^2 + z^2 - 3z = 0$

[5] Find an equation in rectangular coordinates for the equation given in cylindrical coordinates, and describe its graph.

(a) $z = 2$	(b) $r = \frac{1}{2} z$ (c)
-------------	-----------------------------

$r = 2\cos\theta$	(ď) $z = r^2 c$	$\cos^2 \theta$	Э
	·	, <u> </u>		

[6] Find an equation in spherical coordinates for the equation given in rectangular coordinates.

(a)
$$z = 2$$
 (b) $x^2 + y^2 - 3z^2 = 0$

(c)
$$x = 10$$
 (d) $x^2 + y^2 + z^2 - 9z = 0$

[7] Find an equation in rectangular coordinates for the equation given in spherical coordinates, and describe its graph.

(a)
$$\theta = \frac{3\pi}{4}$$
 (b) $\phi = \frac{\pi}{2}$

(c)
$$\rho = 3 \sec \phi$$
 (d) $\rho = 4 \csc \phi \sec \theta$

[8] Let *V* be the volume of the solid inside the sphere $x^2 + y^2 + z^2 = 4$ and below the plane z = -1. Express *V* as an integral in (a) cylindrical coordinates and (b) spherical coordinates.

[9] Let *Q* be the solid inside the sphere $x^2 + y^2 + z^2 = 4$ and outside the cylinder $x^2 + y^2 = 1$. Express the volume of *Q* as an iterated integral in(a)cylindrical coordinates and(b)spherical coordinates.

[10] Evaluate:
$$\int_{-2}^{1}\int_{0}^{2x}\int_{z}^{x+2z}xdydzdx$$

[11] A thin plate occupies the region inside the circle $x^2 + y^2 = 4$ and to the right of the line x = 1. If the density at (x, y) is given by $\delta(x, y) = \frac{36}{\sqrt{x^2 + y^2}}$, set up the integral representing the mass of the plate.