SI Session: Exam III Review
Mondays: \quad 4:50 PM - 6:20 PM
Tuesdays: $\quad 1: 30 \mathrm{PM}-3: 00 \mathrm{PM}$
Wednesdays: 4:50 PM - 6:20 PM
Room 1245 SNAD

Prof. Stockton : Calculus III
Spring 2009
SI Leader : Neil Jody
[1] Let $\vec{F}(x, y, z)=\left\langle x z+y^{2}, x y+x z, x^{2} y z^{2}\right\rangle$. Calculate (a) $\operatorname{div} \vec{F}$, (b) curl \vec{F}.
[2] Let Q be the region in space inside the sphere $x^{2}+y^{2}+z^{2}=4$, above the $x y$ plane, and outside the cylinder $x^{2}+y^{2}=1$ (see figure). Express $\iiint_{Q}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$ as an iterated integral in (a) spherical coordinates and (b) cylindrical coordinates. Do not evaluate the integrals.

[3] Evaluate the following triple integral $\int_{-1}^{2} \int_{0}^{x} \int_{x}^{x-4 z} 6 y z d y d z d x$.
[4] Let C be a smooth curve in the $x y$-plane beginning $(-2,3)$ and $(0,-1)$. Use the fundamental Theorem Theorem of Line Integrals to evaluate:
$\int_{C}\left(2 x+y^{2}\right) d x+(2 x y+2) d y$
[5] Let Q be the solid in the first octant bounded by the coordinate planes and the graphs of $z=4-x^{2}$ and $x+y=2$ (see diagram below). Express $\iiint_{Q} f(x, y, x) d V$ as a triple iterated integral.

[6] Let C be the space curve generated by $\vec{r}(t)=\left(\ln t, t, t^{2}\right)$ for $1 \leq t \leq e$. Calculate the work done by the vector field $\vec{F}(x, y, z)=\langle 2 y, 3 z, x\rangle$ along C.
[7] Rewrite the integral $\int_{0}^{2} \int_{0}^{4-2 x} \int_{0}^{\frac{12-6 x-3 y}{4}} f(x, y, z) d z d y d x$ in the order $d y d x d z$.
[8] Use Green's Theorem to evaluate the line integral $\int_{C}(x-x y) d x+\left(2 x y+y^{2}\right) d y$ where C is the triangle with vertices $(0,0),(0,2)$, and $(2,2)$, oriented counterclockwise.
[9] Let C be the portion of the circle $x^{2}+y^{2}=9$ from $(0,3)$ to $(-3,0)$. Evaluate the following line integral $\int_{C}-y^{2} d x+x y d y$
[10] Calculate $\int_{C} \frac{8 x}{y} d s$ where C is the portion of the curve $x=y^{2}$ from $(1,1)$ to $(4,2)$.
[11] Let S be the portion of the cylinder $z=4-y^{2}$ lying in the first octant to the right of the plane $y=4$ (see diagram).
A parametrization of S is
$\vec{r}(u, v)=\left(u, v, 4-v^{2}\right)$ where the domain
of \vec{r} is the region D shown below:

(a) Express the surface area of S as an iterated integral over the region D, but don not evaluate the integral.
(b) Evaluate the surface integral $\iint_{S} 4 y d S$.
(c) Calculate the upward flux of $\vec{F}(x, y, z)=\left\langle y z, 2 x+y, y^{2}+z\right\rangle$ across S.

