SI Session: Exam II Review
Mondays: \quad 4:50 PM - 6:20 PM
Tuesdays: $\quad 1: 30 \mathrm{PM}-3: 00 \mathrm{PM}$
Wednesdays: 4:50 PM - 6:20 PM
Room 1245 SNAD

Prof. Stockton : Calculus III
Spring 2009
SI Leader : Neil Jody
[1] Let $f(x, y)=4 x^{2}+9 y^{2}$.
(a) Sketch the level curve of f containing the point $(0,-2)$.

(b) Find the unit vector which points in the direction in which f decreases most rapidly at $(0,-2)$.
[2] Find an equation of the plane tangent to the surface $x^{2}+y z^{3}=4$ at the point $(-1,3,1)$.
[3] Find the directional derivative of the function $f(x, y, z)=x y z$ at the point $(1,2,-2)$ in the direction from $(1,2,-2)$ to $(-1,0,-1)$.
[4] Find the absolute extrema of the function $f(x, y)=x^{2}+y^{2}-6 y$ on the closed region bounded by the graphs $y=4-x^{2}$ and $x+y=2$.

[5] Use Lagrange Multipliers to find the maximum and minimum of the function $f(x, y, z)=x+y+z$ on the sphere $x^{2}+y^{2}+z^{2}=4$.
[6] Let $f(x, y, z)=x \ln y+y^{2} \sin (x z)$. Calculate $f_{y x y}$.
[7] Evaluate the integral $\int_{1}^{2} \int_{0}^{\sqrt{4-x^{2}}} \frac{x}{x^{2}+y^{2}} d y d x$ by first converting to polar coordinates.
[8] Let $z=x^{2}+x y, x=r s+2 t, y=r^{2}-s t$. Calculate z_{r} when $r=1, s=-2$, and $t=3$.
[9] Let $f(x, y)=6 x^{2}-2 x^{3}+3 y^{2}+6 x y$. Find all relative extrema and saddle points for f.
[10] Let D be the triangular region in the $x y$-plane bounded by the graphs of $x+y=6, y=2 x$, and $5 y=x$. Using the change of variables $x=5 u+v$ and $y=u+2 v$, express the integral $\iint_{D}(5 y-x) e^{y-2 x} d x d y$ as an iterated integral in the variables u and v. Do not evaluate the integral.
[11] Let D be the region in the $x y$-plane bounded by the x-axis, the y-axis, the line $y=1$, and the curve $y=\ln x$. Express $\iint_{D} f(x, y) d A$ as an iterated integral. Do not evaluate the integral.

[12] Express $\int_{0}^{1} \int_{3}^{4-x^{2}} f(x, y) d y d x$ as an iterated integral with the reverse order of integration.

[13] Let D be the region in the $x y$-plane bounded by the lines $y=3 x, 2 y=x$, and $x=4$. Using the change of variables $x=u-2 v$ and $y=3 u-v$, evaluate $\iint_{D}(y-3 x) d y d x$.

[14] Let D be the region in the $x y$-plane bounded by the lines $x+2 y=2$, $y=x+1$, and $y=-2 x+4$. Use the change of variables $x=u+2 v$ and $y=u-v+1$ to evaluate the integral $\iint_{D}(x-y) d A$.

[15] Evaluate the integral $\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \sin \left(x^{2}+y^{2}\right) d x d y$ by first converting to polar coordinates.
[16] Let D be the region in the $x y$-plane bounded on the left by the y-axis, above by the graph of $x^{2}+y^{2}=4$ and below by the line $y=1$.
Evaluate $\iint_{D} \frac{1}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}} d x d y$ by converting to polar coordinates.

