SI Session:February $16^{\text {th }}, 17^{\text {th }} \& 19^{\text {th }}, 2009$
Mondays: $\quad$ 4:50 PM - 6:20 PM
Tuesdays: $\quad 1: 30 \mathrm{PM}-3: 00 \mathrm{PM}$
Wednesdays: 4:50 PM - 6:20 PM
Room 1245 SNAD

Prof. Stockton : Calculus III
Spring 2009
SI Leader : Neil Jody
[1] Match each equation to its graph (write the letter of the graph next to its equation).
$y=-x^{2}+z^{2}$
$-4 x^{2}+9 y^{2}+4 z^{2}=36$
$\qquad$ $y=x^{2}+4 z^{2}$
$\qquad$ $-4 x^{2}+y^{2}+4 z^{2}=0$
$\qquad$ $z=4-x^{2}$

[2] Let $\vec{u}=\langle 1,3,-4\rangle$ and $\vec{v}=\langle 2,-2,1\rangle$.
(a) Calculate $\operatorname{proj}_{\vec{u}} \vec{v}$.
(b) Calculate $\vec{u} \times \vec{v}$.
(c) Calculate $(2 \vec{u}-3 \vec{v}) \bullet(\vec{u}+4 \vec{v})$.
(d) Calculate the area of the parallelogram with adjacent sides $\vec{u}$ and $\vec{v}$.
[2] (continued from previous page)
(e) Find a vector that has the direction of $\vec{u}$ and the length of $\vec{v}$.
(f) Determine the value of $c$ so that the vector $\langle c, 1,-2\rangle$ lies in the plane of $\vec{u}$ and $\vec{v}$.
[3] To the nearest tenth of a degree, find the angle between the planes $x-y+5 z=1$ and $-x+3 y-z=2$.
[4] Find the equation of the plane containing the points $(1,0,2),(3,-2,-1)$, and $(2,1,1)$.
[5] Find the length of the curve generated by $\vec{r}(t)=\left(2 t, t^{2}, \frac{1}{3} t^{3}\right)$ where $0 \leq t \leq 3$.
[6] Find parametric equations of the line tangent to the curve generated by $\vec{r}(t)=\left(e^{t-2}, t^{2}-1, \sqrt{t+2}\right)$ at the point $(1,3,2)$.
[7] Find the distance from the point $(-4,1,3)$ to the plane $2 x-y+3 z=6$.
[8] Find $\vec{r}(t)$ if $r^{\prime}(t)=\left\langle 2 t-2, \sin t, e^{t}\right\rangle$ and $\vec{r}(0)=(3,1,-3)$.
[9] The position of a particle at time $t$ is given by the function $\vec{r}(t)=\left(\sin t, t^{2}+4 t,-\cos t\right)$.
(a) At what time(s), if any, is the speed of the particle equal to 2 ?
(b) At what time(s), if any, will the velocity and acceleration vectors be orthogonal?
[10] Evaluate the following limit: $\lim _{t \rightarrow 2}\left(t^{2} \hat{i}-\frac{1}{t} \hat{j}+\cos (t-2) \hat{k}\right)$.
[11] Determine if the point $(-1,2,6)$ lies on the line given by the parametric equations $x=-2+3 t, y=6 t, z=3-2 t$.
[12] Find the values of $a$ and $b$ so that $\vec{u}=\langle 2,-1,-5\rangle$ and $\vec{v}=\langle a, b,-1\rangle$ are parallel.
[13] A particle is moving along the line containing the point $(1,1,2)$ with direction vector $\langle-1,2,1\rangle$ at a speed of 4 units per second. The particle intersects the paraboloid $z=x^{2}+y^{2}$ in exactly two points, $P_{1}$ and $P_{2}$. How long does it take the particle to travel the distance between $P_{1}$ and $P_{2}$ ?

