SI: Neil Jody Professor: George Stockton

Wednesdays Rm 1245
03:00 PM - 05:00 PM and 05:00 PM - 07:00 PM

1. Evaluate the iterated integrals.
(a) $\int_{0}^{1} \int_{0}^{\pi} \mathrm{e}^{x} \sin (y) d y d x$
(b) $\int_{0}^{\pi / 2} \int_{1}^{\mathrm{e}} \frac{\sin (y)}{x} d x d y$
2. Express $\int_{1}^{4} \int_{1}^{\sqrt{x}} x \mathrm{e}^{y} d y d x$ as an iterated integral with the reverse order of integration.
3. Reverse the order of integration for $\int_{0}^{\ln 2} \int_{\mathrm{e}^{y}}^{2} f(x, y) d x d y$.
4. Set up a double integral and evaluate.
(a) $\iint_{D}\left(4-x^{2}\right) d A ; D$: region bounded by $y=0, x=0$ and $y=4-x^{2}$.
(b) $\iint_{D} \frac{y}{1+x^{2}} d A ; D$: region bounded by $y=0, y=\sqrt{x}$ and $x=4$.
(c) $\int_{0}^{1} \int_{y / 2}^{1 / 2} \mathrm{e}^{-x^{2}} d x d y$
(d) $\int_{0}^{\ln 10} \int_{\mathrm{e}^{x}}^{10} \frac{1}{\ln y} d y d x$
5. Let D be the region bounded by the graphs of $x=y^{2}$ and $x-y=2$. Evaluate the integral $\iint_{D}(6 x+$ $\left.12 y^{2}\right) d x d y$.
6. Let D be the triangular region with vertices $(-1,0),(0,2)$ and $(2,0)$. Using the change of variables $x=\frac{u+v}{3}, y=\frac{2 v-u}{3}$, express $\iint_{D}(x+y) d x d y$ as an iterated integral. Do Not evaluate the integral.
7. Let D be the region in the first quadrant of the $x y$-plane bounded by the graphs of $(x-1)^{2}+y^{2}=1, x=1$ and $y=0$. Express $\iint_{D} \mathrm{e}^{x^{2}+y^{2}} d A$ as an iterated integral in polar coordinates.
8. Convert $\int_{0}^{\sqrt{3}} \int_{1}^{\sqrt{4-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$ to an iterated integral in polar coordinates.
9. Find the relative extrema and saddle points for the function $f(x, y)=x^{3}+3 x y^{2}-3 x^{2}-3 y^{2}+4$.
10. Find parametric equations for the line tangent to the curve of intersection of the surfaces $x^{2}+2 y^{2}+3 z^{2}=$ 36 and $2 x^{2}-y^{2}+z^{2}=7$ at the point $(1,2,3)$.
11. Find an equation of the plane tangent to the surface $x y z-4 x z^{3}+y^{3}=10$ at the point $(-1,2,1)$. Then find the angle between this tangent plane and the $x y$-plane.
12. Find the maximum and minimum values of the function $f(x, y)=x y-x-y-1$ on the closed triangular region bounded by the x-axis, y-axis and the line $x+y=3$.
