1. Find all points on the surface $x y-2 x+z^{2}=8$ at which the plane tangent to the surface is parallel to the plane with equation $x+y-2 z=3$
2. Find the absolute extrema of the function over the region R. In each case, R contains the boundaries.
(a) $f(x, y)=(2 x-y)^{2}, R$: The triangular region in the xy-plane with vertices $(2,0),(0,1)$ and $(1,2)$.
(b) $f(x, y)=x^{2}-4 x y+5, R=\{(x, y): 0 \leq x \leq 4,0 \leq y \leq \sqrt{x}\}$
(c) $f(x, y)=\frac{4 x y}{\left(x^{2}+1\right)\left(y^{2}+1\right)}, R=\left\{(x, y): x \geq 0, y \geq 0, x^{2}+y^{2} \leq 1\right\}$
3. For each of the following functions, find all local extrema and saddle points.
(a) $f(x, y)=x^{3}-4 x y+2 y^{2}-1$
(b) $g(x, y)=x^{2}-4 x y+y^{3}+4 y$
4. Find the maximum and minimum values of the function $g(x, y)=x^{2}+y^{2}-x-y+1$ on the unit disk $x^{2}+y^{2} \leq 1$
5. The function $f(x, y, z)=2 x^{2}+y^{2}+3 z^{2}$ has a minimum value on the plane $2 x-3 y+4 z=49$. Find this minimum value.
6. A spider living in a two-dimensional world finds itself in a toxic environment. The toxicity at (x, y) is given by the function $T(x, y)=4 x^{2}-4 x y+y^{2}$
(a) If the spider is at the point $(2,1)$, in which direction should it move in order to lower the toxicity the fastest?
(b) Use Lagrange multipliers to determine the points along the parabola $y=x^{2}$ at which the toxicity is the lowest.
7. Use Lagrange multipliers to find the maximum value of the function $f(x, y, z)=2 x y+3 z^{2}$ on the sphere $x^{2}+y^{2}+z^{2}=4$.
8. Find the absolute maximum and minimum values of the function $f(x, y)=x^{2} y-x^{2}-y+1$ on the triangular region with vertices $(0,0),(2,4)$ and $(2,0)$.
