MATH 2415	Calculus III SI Session	10/19/2011
SI: Neil Jody		Professor: George Stockton

Wednesdays Rm 1245

03:00 PM - 05:00 PM and 05:00 PM - 07:00 PM

- 1. Find all points on the surface $xy 2x + z^2 = 8$ at which the plane tangent to the surface is parallel to the plane with equation x + y 2z = 3
- 2. Find the absolute extrema of the function over the region R. In each case, R contains the boundaries. (a) $f(x,y) = (2x - y)^2$, R: The triangular region in the xy-plane with vertices (2,0), (0,1) and (1,2). (b) $f(x,y) = x^2 - 4xy + 5$, $R = \{(x,y) : 0 \le x \le 4, 0 \le y \le \sqrt{x}\}$ (c) $f(x,y) = \frac{4xy}{(x^2+1)(y^2+1)}$, $R = \{(x,y) : x \ge 0, y \ge 0, x^2 + y^2 \le 1\}$
- 3. For each of the following functions, find all local extrema and saddle points. (a) $f(x,y) = x^3 - 4xy + 2y^2 - 1$ (b) $g(x,y) = x^2 - 4xy + y^3 + 4y$
- 4. Find the maximum and minimum values of the function $g(x, y) = x^2 + y^2 x y + 1$ on the unit disk $x^2 + y^2 \le 1$
- 5. The function $f(x, y, z) = 2x^2 + y^2 + 3z^2$ has a minimum value on the plane 2x 3y + 4z = 49. Find this minimum value.
- 6. A spider living in a two-dimensional world finds itself in a toxic environment. The toxicity at (x, y) is given by the function T(x, y) = 4x² 4xy + y²
 (a) If the spider is at the point (2, 1), in which direction should it move in order to *lower* the toxicity the fastest?
 (b) Use Lagrange multipliers to determine the points along the parabola y = x² at which the toxicity

(b) Use Lagrange multipliers to determine the points along the parabola $y = x^2$ at which the toxicity is the lowest.

- 7. Use Lagrange multipliers to find the maximum value of the function $f(x, y, z) = 2xy + 3z^2$ on the sphere $x^2 + y^2 + z^2 = 4$.
- 8. Find the absolute maximum and minimum values of the function $f(x, y) = x^2y x^2 y + 1$ on the triangular region with vertices (0,0), (2,4) and (2,0).