SI: Neil Jody

Wednesdays Rm 1245
03:00 PM - 05:00 PM and 05:00 PM - 07:00 PM

1. Find an equation of the plane containing the points $(2,1,1),(-31,-2)$, and $(4,-5,-5)$.
2. The planes $2 x+3 y-z=2$ and $x-y+3 z=-1$ intersect in a line. Verify these planes intersect. Find parametric equations for this line.
3. Find an equation of the plane containing the point $(-1,1,4)$ and orthogonal to the line given by $x=1+2 t$, $y=3-t, z=8+3 t$.
4. Find an equation of the plane which contains the points $(1,1,-3)$ and $(2,-1,-2)$ and is perpendicular to the plane given by $2 x-3 y-z=6$.
5. Find the distance between the point $(1,2,3)$ and the line with parametric equations $x=1+t, y=$ $1-t, z=2 t$.
6. Represent the plane curve by a vector-valued function. (There are many correct answers.)
(a) $2 x-3 y+5$
(b) $y=4-x^{2}$
(c) $(x-2)^{2}+y^{2}=4$
(d) $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
7. Evaluate the limit.
(a) $\lim _{t \rightarrow+\infty}\left\langle\frac{t^{2}+1}{3 t^{2}+2}, \frac{1}{t}\right\rangle$
(b) $\lim _{t \rightarrow 0}\left(\mathrm{e}^{t} \hat{i}+\frac{\sin t}{t} \hat{j}+\mathrm{e}^{-t} \hat{k}\right)$
(c) $\lim _{t \rightarrow 1}\left(\sqrt{t} \hat{i}+\frac{\ln t}{t^{2}-1} \hat{j}+2 t^{2} \hat{k}\right)$
(d) $\lim _{t \rightarrow+\infty}\left(\mathrm{e}^{-t} \hat{i}+\frac{1}{t} \hat{j}+\frac{t}{t^{2}+1} \hat{k}\right)$
8. A particle travels along the curve given by $\mathbf{r}(t)=(2 \cos t, 2 \sin t, t)$ where $0 \leq t \leq \pi$.
(a) Find the length of the curve traced by the particle.
(b) Find parametric equations for the line tangent to the curve at the point $(-2,0, \pi)$.
(c) At what time will the particle be exactly 7 units from the origin?
(d) Show that the velocity and acceleration of the particle are always orthogonal.
(e) At what time will the particle intersect the surface $z+1=x^{2}+y^{2}$?
