1. Find $\mathbf{u} \times \mathbf{v}$ and show that is is orthogonal to both \mathbf{u} and \mathbf{v}.
(a) $\mathbf{u}=(-10,0,6), \mathbf{v}=(7,0,0)$
(b) $\mathbf{u}=\hat{i}+6 \hat{j}, \mathbf{v}=-2 \hat{i}+\hat{j}+\hat{k}$
2. Verify that the points are the vertices of a parallelogram, and find its area.
$(2,-3,1),(6,5,-1),(3,-6,4),(7,2,2)$
3. Find the area of the triangle with the given vertices: $(1,2,0),(-2,1,0),(0,0,0)$
4. Let $\mathbf{u}=2 \hat{i}+5 \hat{j}+\hat{k}$ and $\mathbf{v}=3 \hat{i}-\hat{j}+7 \hat{k}$
(a) Find the vector which has the same length as \mathbf{u} and the opposite direction as \mathbf{v}.
(b) Determine if the vector $\mathbf{w}=\hat{i}+3 \hat{k}$ lies in the plane of \mathbf{u} and \mathbf{v}.
(c) Find all unit vectors which are orthogonal to both \mathbf{u} and \mathbf{v}.
(d) Find the angle between \mathbf{u} and \mathbf{v}.
5. Find the vector that has length 3 and has the opposite direction as $\langle-1,2,4\rangle$.
6. Let $\mathbf{u}=\langle-1,4,-2\rangle$. Find a vector \mathbf{v} such that the area of the parallelogram spanned by \mathbf{u} and \mathbf{v} is 10.
7. Find a set of parametric equations of the described line.
(a) The line that passes through the point $(-4,5,2)$ and is parallel to both the xy-plane and the yzplane.
(b) The line that passes through the point $(-4,5,2)$ and is perpendicular to the plane given by $-x+2 y+z=5$.
(c) The line that passes through the point $(1,4,-3)$ and is parallel to $\mathbf{v}=5 \hat{i}-\hat{j}$.
(d) The line that passes through the point $(6,0,8)$ and is parallel to the line $x=5-2 t, y=2 t-4$, $z=0$.
8. Find an equation of the described plane.
(a) The plane that passes through $(2,3,-2),(3,4,2)$, and $(1,-1,0)$.
(b) The plane that passes through the point $(1,2,3)$ and parallel to the $y z$-plane.
(c) The plane that passes through the points $(3,2,1)$ and $(3,1,-5)$ and is perpendicular to the plane $6 x+7 y+2 z=10$
(d) The plane that passes through the points $(4,2,1)$ and $(-3,5,7)$ and is parallel to the z-axis.
9. Determine all values of c such that the angle between the vectors $\mathbf{u}=(-1,01)$ and $\mathbf{v}=(c, 3,1)$ is 45°.
10. Find parametric equations for the line through $(3,1,-2)$ that intersects and is perpendicular to the line given by: $x=-1+t, y=-2+t, z=-1+t$.
11. Find an equation of the plane that contains the following lines:
$l_{1}: x=t, y=2-t, z=2+3 t$ and $l_{2}: x=1+4 t, y=1, z=5+2 t$
12. Find the distance from the point $(1,2,3)$ to the plane $x+y-2 z=1$.
13. (a) If two nonzero vectors are parallel, what can be said about the angle between them?
(b) Suppose that \mathbf{u} and \mathbf{v} are nonzero vectors in space satisfying $\|\mathbf{u} \times \mathbf{v}\|=0$ Show that \mathbf{u} and \mathbf{v} must be parallel.
14. Determine if the vectors $\langle-1,1,2\rangle,\langle 2,1,-1\rangle$ and $\langle 4,-1,-5\rangle$ lie in a common plane.
