Wednesdays Rm 1245
03:00 PM - 05:00 PM and 05:00 PM - 07:00 PM

1. Find an equation in spherical coordinates for the equation given in rectangular coordinates.
(a) $z=2$
(b) $x^{2}+y^{2}-3 z^{2}=0$
(c) $x=10$
(d) $x^{2}+y^{2}+z^{2}-9 z=0$
2. Find an equation in rectangular coordinates for the equation given in spherical coordinates, and describe its graph.
(a) $\theta=\frac{3 \pi}{4}$
(b) $\phi=\frac{\pi}{2}$
(c) $\rho=3 \sec (\phi)$
(d) $\rho=4 \csc (\phi) \sec (\theta)$
3. Let V be the volume of the solid inside the sphere $x^{2}+y^{2}+z^{2}=4$ and below the plane $z=-1$. Express V as an integral in (a) cylindrical coordinates and (b) spherical coordinates.
4. Let Q be the solid inside the sphere $x^{2}+y^{2}+z^{2}=4$ and outside the cylinder $x^{2}+y^{2}=1$. Express the volume of Q as an iterated integral in in (a) cylindrical coordinates and (b) spherical coordinates.
5. Rewrite the integral $\int_{0}^{4} \int_{0}^{y / 2} \int_{0}^{y-2 x} x y z d z d x d y$ as an iterated integral in the order $d y d z d x$.
6. Let Q be the wedge in the first octant cut from the cylinder $y^{2}+z^{2}=1$ by the planes $y=x$ and $x=0$. Express $\iiint z d V$ as a triple iterated integral.
7. Evaluate the integral $\int_{-1}^{3} \int_{y}^{3} \int_{2 z}^{2 y-z} z d x d z d y$.
8. A thin plate has the shape of the triangular region D with vertices $(0,0),(1,0),(0,1)$. If the density of D at the point (x, y) is $\delta(x, y)=x y$, calculate the mass of D.
9. Find the divergence for the vector field \mathbf{F}.
(a) $\mathbf{F}(x, y, z)=x \mathrm{e}^{x} \hat{i}+y \mathrm{e}^{y} \hat{j}$
(b) $\mathbf{F}(x, y, z)=\ln \left(x^{2}+y^{2}\right) \hat{i}+x y \hat{j}+\ln \left(y^{2}+z^{2}\right) \hat{k}$
10. Find curl \mathbf{F} for the vector field at the given point.
(a) $\mathbf{F}(x, y, z)=x^{2} z \hat{i}-2 x z \hat{j}+y z \hat{k},(2,-1,3)$
(b) $\mathbf{F}(x, y, z)=\mathrm{e}^{-x y z}(\hat{i}+\hat{j}+\hat{k}),(3,2,0)$
11. Determine if the following vector field is conservative by finding a potential function.
(a) $\mathbf{F}(x, y)=\left(2 x-y^{2}, y^{3}-2 x y\right)$
(b) $\mathbf{F}(x, y, z)=y^{2} z^{3} \hat{i}+2 x y z^{3} \hat{j}+3 x y^{2} z^{2} \hat{k}$
