1. Sketch the solid whose volume is given by the iterated integral and rewrite the integral using the indicated order of integration.
(a) $\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{6-x-y} d z d y d x$; rewrite using the order $d z d x d y$.
(b) $\int_{0}^{2} \int_{2 x}^{4} \int_{0}^{\sqrt{y^{2}-4 x^{2}}} d z d y d x$; rewrite using the order $d x d y d z$.
2. Express as an triple iterated integral the volume of the solid in the first octant bounded by the coordinate axes and the graphs of $z+x^{2}=4$ and $y+z=4$.
3. A thin plate has the shape of the region in the $x y$-plane bounded by the graphs of $y=2, y=-x+2$, $y=\frac{1}{2} x-1$. If the density at (x, y) is given by $\delta(x, y)=x^{2}+y^{2}+1$, set up an iterated integral which gives the mass of the plate
4. Find an equation in cylindrical coordinates for the equation given in rectangular coordinates.
(a) $x=4$
(b) $z=x^{2}+y^{2}-2$
(c) $x^{2}+y^{2}=8 x$
(d) $x^{2}+y^{2}+z^{2}-3 z=0$
5. Find an equation in rectangular coordinates for the equation given in cylindrical coordinates, and describe its graph.
(a) $z=2$
(b) $r=\frac{1}{2} z$
(c) $r=2 \cos (\theta)$
(d) $z=r^{2} \cos ^{2}(\theta)$
6. Let V be the volume of the solid inside the sphere $x^{2}+y^{2}+z^{2}=4$ and below the plane $z=-1$. Express V as an integral in cylindrical coordinates.
7. Let Q be the solid inside the sphere $x^{2}+y^{2}+z^{2}=4$ and outside the cylinder $x^{2}+y^{2}=1$. Express the volume of Q as an iterated integral in in cylindrical coordinates.
8. Evaluate $\int_{-2}^{1} \int_{0}^{2 x} \int_{z}^{x+2 z} x d y d z d x$
9. A thin plate occupies the region inside the circle $x^{2}+y^{2}=4$ and to the right of the line $x=1$. If the density at (x, y) is given by $\delta(x, y)=\frac{36}{\sqrt{x^{2}+y^{2}}}$, set up the integral representing the mass of the plate.
