MATH 2415	Calculus III SI Session	11/09/2011
SI: Neil Jody		Professor: George Stockton
		0

Wednesdays Rm 1245 03:00 PM - 05:00 PM and 05:00 PM - 07:00 PM

- 1. Sketch the solid whose volume is given by the iterated integral and rewrite the integral using the indicated order of integration.

 - (a) $\int_0^3 \int_0^{\sqrt{9-x^2}} \int_0^{6-x-y} dz dy dx$; rewrite using the order dz dx dy. (b) $\int_0^2 \int_{2x}^4 \int_0^{\sqrt{y^2-4x^2}} dz dy dx$; rewrite using the order dx dy dz.
- 2. Express as an triple iterated integral the volume of the solid in the first octant bounded by the coordinate axes and the graphs of $z + x^2 = 4$ and y + z = 4.
- 3. A thin plate has the shape of the region in the xy-plane bounded by the graphs of y = 2, y = -x + 2, $y = \frac{1}{2}x 1$. If the density at (x, y) is given by $\delta(x, y) = x^2 + y^2 + 1$, set up an iterated integral which gives the mass of the plate
- 4. Find an equation in cylindrical coordinates for the equation given in rectangular coordinates. (a) x = 4 (b) $z = x^2 + y^2 2$ (c) $x^2 + y^2 = 8x$ (d) $x^2 + y^2 + z^2 3z = 0$
- 5. Find an equation in rectangular coordinates for the equation given in cylindrical coordinates, and describe its graph.
 - (b) $r = \frac{1}{2}z$ (c) $r = 2\cos(\theta)$ (d) $z = r^2\cos^2(\theta)$ (a) z = 2
- 6. Let V be the volume of the solid inside the sphere $x^2 + y^2 + z^2 = 4$ and below the plane z = -1. Express V as an integral in cylindrical coordinates.
- 7. Let Q be the solid inside the sphere $x^2 + y^2 + z^2 = 4$ and outside the cylinder $x^2 + y^2 = 1$. Express the volume of Q as an iterated integral in in cylindrical coordinates.
- 8. Evaluate $\int_{-2}^{1} \int_{0}^{2x} \int_{z}^{x+2z} x dy dz dx$
- 9. A thin plate occupies the region inside the circle $x^2 + y^2 = 4$ and to the right of the line x = 1. If the density at (x, y) is given by $\delta(x, y) = \frac{36}{\sqrt{x^2 + y^2}}$, set up the integral representing the mass of the plate.