1. Find the vectors \mathbf{u} and \mathbf{v} whose initial and terminal points are given. Show that \mathbf{u} and \mathbf{v} are equivalent.
(a) $\mathbf{u}:(-4,0),(1,8), \mathbf{v}:(2,-1),(7,7)$
(b) $\mathbf{u}:(-4,-1),(11,-4), \mathbf{v}:(10,13),(25,10)$
2. Find the vector \mathbf{v} where $\mathbf{u}=(2,-1)$ and $\mathbf{w}=(1,2)$. Illustrate the vector operations geometrically.
(a) $\mathbf{v}=\mathbf{u}+\mathbf{w}$ (b) $\mathbf{v}=5 \mathbf{u}-3 \mathbf{w}$
3. Find the following: $\|\mathbf{u}\|,\|\mathbf{v}\|,\|\mathbf{u}+\mathbf{v}\|,\left\|\frac{\mathbf{u}}{\|\mathbf{u}\|}\right\|,\left\|\frac{\mathbf{u}+\mathbf{v}}{\|\mathbf{u}+\mathbf{v}\|}\right\|$.
(a) $\mathbf{u}=(0,1), \mathbf{v}=(3,-3)$
4. Find a unit vector(1)parallel to and (2)normal to the graph of $f(x)$ at the given point.
(a) $f(x)=\sqrt{25-x^{2}},(3,4)$
(b) $f(x)=\tan x,\left(\frac{\pi}{4}, 1\right)$
5. Let $\mathbf{u}_{0}=\left(x_{0}, y_{0}\right), \mathbf{u}=(x, y)$, and $c>0$. Describe the set of all points $P(x, y)$ such that $\left\|\mathbf{u}-\mathbf{u}_{0}\right\|=c$.
6. Find the coordinates of the point.
(a) The point is located seven units in front of the $y z$ - plane, two units to the left of the $x z$ - plane, and one unit below the $x y$-plane.
(b) The point is located in the $y z$ - plane, three units to the right of the $x z$-plane, and two units above the $x y$ - plane
7. What is the x-coordinate of any point in the $y z$-plane?
8. Find the distance between the given points.
(a) $(-2,3,2),(2,-5,-2)$, (b) $(2,2,3),(4,-5,6)$
9. Write the equation of the sphere in standard form. State the center and the radius.
(a) $x^{2}+y^{2}+z^{2}+9 x-2 y+10 z+19=0$
10. Find the vector \mathbf{v} with magnitude $\sqrt{5}$ and direction of $\mathbf{u}=(-4,6,2)$.
11. Prove the following version of the triangle inequality: $|\|\mathbf{a}\|-\|\mathbf{b}\|| \leq\|\mathbf{a}-\mathbf{b}\|$. Hint: $\mathbf{a}=(\mathbf{a}-\mathbf{b})+\mathbf{b}$.
12. Let \mathbf{a} and \mathbf{b} be nonzero vectors such that $\|\mathbf{a}-\mathbf{b}\|=\|\mathbf{a}+\mathbf{b}\|$.
(a) What can you conclude about the parallelogram generated by \mathbf{a} and \mathbf{b} ?
(b) Show that if $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$, then $a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=0$.
13. (a) Show that if \mathbf{a} and \mathbf{b} have the same direction, then $\|\mathbf{a}+\mathbf{b}\|=\|\mathbf{a}\|+\|\mathbf{b}\|$.
(b) Does this equation necessarily hold if \mathbf{a} and \mathbf{b} are only parallel?
14. Find α given that $\|\alpha \mathbf{i}+(\alpha-1) \mathbf{j}+(\alpha+1) \mathbf{k}\|=2$.
15. Find the angle θ between the vectors.
(a) $\mathbf{u}=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}, \mathbf{v}=2 \mathbf{i}-3 \mathbf{j}$, (b) $\mathbf{u}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}, \mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$
16. Determine whether \mathbf{u} and \mathbf{v} are orthogonal, parallel, or neither.
(a) $\mathbf{u}=-2 \mathbf{i}+3 \mathbf{j}-\mathbf{k}, \mathbf{v}=2 \mathbf{i}+\mathbf{j}-\mathbf{k}$, (b) $\mathbf{u}=(\cos \theta, \sin \theta, 1), \mathbf{v}=(\sin \theta,-\cos \theta, 0)$
17. Find the projection of \mathbf{u} onto \mathbf{v} and the vector component of \mathbf{u} orthogonal to \mathbf{v}.
(a) $\mathbf{u}=(2,-3), \mathbf{v}=(3,2),(b) \mathbf{u}=(1,0,4), \mathbf{v}=(3,0,2)$
