Wednesdays Rm 1245
03:00 PM - 05:00 PM and 05:00 PM - 07:00 PM

1. Let $f(x, y)=4 x^{2}+9 y^{2}$.
(a) Sketch the level curve of f containing the point $(0,-2)$.
(b) Find the unit vector which points in the direction in which f decreases most rapidly at $(0,-2)$.
2. Find an equation of the plane tangent to the surface $x^{2}+y z^{3}=4$ at the point $(-1,3,1)$.
3. Find the directional derivative of the function $f(x, y, z)=x y z$ at the point $(1,2,-2)$ in the direction from $(1,2,-2)$ to $(-1,0,-1)$.
4. Find the absolute extrema of the function $f(x, y)=x^{2}+y^{2}-6 y$ on the closed region bounded by the graphs $y=4-x^{2}$ and $x+y=2$.
5. Use Lagrange Multipliers to find the maximum and minimum of the function $f(x, y, z)=x+y+z$ on the sphere $x^{2}+y^{2}+z^{2}=4$.
6. Let $f(x, y, z)=x \ln (y)+y^{2} \sin (x z)$. Calculate $f_{y x y}$.
7. Evaluate the integral $\int_{1}^{2} \int_{0}^{\sqrt{4-x^{2}}} \frac{x}{x^{2}+y^{2}} d y d x$ by first converting to polar coordinates.
8. Let $z=x^{2}+x y, x=r s+2 t, y=r^{2}-s t$. Calculate z_{r} when $r=1, s=-2$ and $t=3$.
9. Let $f(x, y)=6 x^{2}-2 x^{3}+3 y^{2}+6 x y$. Find all relative extrema and saddle points for f.
10. Let D be the triangular region in the $x y$-plane bounded by the graphs of $x+y=6, y=2 x$ and $5 y=x$. Using the change of variables $x=5 u+v$ and $y=u+2 v$, express $\iint_{D}(5 y-x) \mathrm{e}^{y-2 x} d x d y$ ans an iterated integral in the variables u and v. Do not evaluate the integral.
11. Let D be the region in the $x y$-plane bounded by the x-axis, the y-axis, the line $y=1$ and the curve $y=\ln (x)$. Express $\iint_{D} f(x, y) d A$ as an iterated integral. Do not evaluate the integral.
12. Express $\int_{0}^{1} \int_{3}^{4-x^{2}} f(x, y) d y d x$ as an iterated integral with the reverse order of integration.
13. Let D be the region in the $x y$-plane bounded by the lines $y=3 x, 2 y=x$ and $x=4$. Using the change of variables $x=u-2 v$ and $y=3 u-v$, evaluate $\iint_{D}(y-3 x) d y d x$.
14. Let D be the region in the $x y$-plane bounded by the lines $x+2 y=2, y=x+1$ and $y=-2 x+4$. Use the change of variables $x=u+2 v$ and $y=u-v+1$ to evaluate the integral $\iint_{D}(x-y) d A$.
15. Evaluate the integral $\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \sin \left(x^{2}+y^{2}\right) d x d y$ by first converting to polar coordinates.
16. Let D be the region in the $x y$-plane bounded on the left by the y-axis, above by the graph of $x^{2}+y^{2}=4$ and below by the line $y=1$. Evaluate $\iint_{D} \frac{1}{\left(x^{2}+y^{2}\right)^{3 / 2}} d x d y$ by converting to polar coordinates.
