SI: Neil Jody Professor: George Stockton
Wednesdays Rm 1245 03:00 PM - 05:00 PM and 05:00 PM - 07:00 PM

1. Sketch the cylinder given by the equation $z=4-x^{2}$
2. Let $\mathbf{u}=(1,3,-4)$ and $\mathbf{v}=(2,-2,1)$
(a) $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$ (b) Calculate $\mathbf{u} \times \mathbf{v}$ (c) Calculate $(2 \mathbf{u}-3 \mathbf{v}) \cdot(\mathbf{u}+4 \mathbf{v})$
(d) Calculate the area of the parallelogram with adjacent sides \mathbf{u} and \mathbf{v}.
(e) Find the vector that has the direction of \mathbf{u} and the length of \mathbf{v}
(f) Determine the value of c so that the vector $\langle c, 1,-2\rangle$ lies in the plane of \mathbf{u} and \mathbf{v}.
3. To the nearest tenth of a degree, find the angle between the planes $x-y+5 z=1$ and $-x+3 y-z=2$.
4. find the equation of the plane containing the points $(1,0,2),(3,-2,-1)$, and $(2,1,1)$.
5. Find the length of the curve generated by $\mathbf{r}(t)=\left(2 t, t^{2}, \frac{1}{3} t^{3}\right)$ where $0 \leq t \leq 3$.
6. Find the parametric equations of the line tangent to the curve generated by $\mathbf{r}(t)=\left(\mathrm{e}^{t-2}, t^{2}-1, \sqrt{t+2}\right)$ at the point $(1,3,2)$.
7. Find the distance from the point $(-4,1,3)$ to the plane $2 x-y+3 z=6$.
8. Find $\mathbf{r}(t)$ if $\mathbf{r}^{\prime}(t)=\left(2 t-2, \sin t, \mathrm{e}^{t}\right)$ and $\mathbf{r}(0)=(3,1,-3)$
9. The position of a particle at time t is given by the function $\mathbf{r}(t)=\left(\sin t, t^{2}+4 t,-\cos t\right)$
(a) At what time(s), if any, is the speed of the particle equal to 2 ?
(b) At what time(s), if any, will the velocity and acceleration vectors be orthogonal?
10. Evaluate the following limit: $\lim _{t \rightarrow 2}\left(t^{2} \hat{i}-\frac{1}{t} \hat{j}+\cos (t-2) \hat{k}\right)$.
11. Determine if the point $(-1,2,6)$ lies on the line given by the parametric equations $x=-2+3 t, y=6 t$, $z=3-2 t$.
12. Find the values of a and b so that $\mathbf{u}=(2,-1,-5)$ and $\mathbf{v}=(a, b,-1)$ are parallel.
13. A particle is moving along the line containing the point $(1,1,2)$ with direction vector $\langle-1,2,1\rangle$ at a speed of 4 units per second. The particle intersects the paraboloid $z=x^{2}+y^{2}$ in exactly two points, P_{1} and P_{2}. How long does it take the particle to travel the distance between P_{1} and P_{2} ?
14. Find $\mathbf{T}(t), \mathbf{N}(t), a_{\mathbf{T}}$ and $a_{\mathbf{N}}$ at the given time t for the curve.
(a) $\mathbf{r}(t)=\left(\mathrm{e}^{t}, \mathrm{e}^{-t}, t\right), t=0$
(b) $\mathbf{r}(t)=\left(\mathrm{e}^{t} \sin t, \mathrm{e}^{t} \cos t, \mathrm{e}^{t}\right), t=0$
15. Find the curvature κ of the curve.
(a) $\mathbf{r}(t)=(4 t, 3 \cos t, 3 \sin t)$
(b) $\mathbf{r}(t)=\left(\mathrm{e}^{t} \cos t, \mathrm{e}^{t} \sin t, \mathrm{e}^{t}\right)$
16. Match each equation to its graph on the following page:
(1) $y=x^{2}+4 z^{2}$
(2) $-4 x^{2}+y^{2}+4 z^{2}=0$
(3) $y=-x^{2}+z^{2}$
(4) $4 x^{2}+9 y^{2}-4 z^{2}=36$

