SI Session: September $3^{\text {rd }} \& 5^{\text {th }}, 2008$
Mondays: \quad 1:30 PM - 3:00 PM
Wednesdays: 4:50 PM - 6:20 PM
Fridays: $\quad 1: 00 \mathrm{PM}-2: 30 \mathrm{PM}$
Room 1239 SNAD

Prof. Stockton : Calculus III
Fall 2008
SI Leader : Neil Jody
[1] Find the vectors \vec{u} and \vec{v} whose initial and terminal points are given. Show that are \vec{u} and \vec{v} equivalent.

$$
\vec{u}:(-4,0),(1,8)
$$

(a)
$\vec{v}:(2,-1),(7,7)$
$\vec{u}:(-4,-1),(11,-4)$
(b)
$\vec{v}:(10,13),(25,10)$
[2] Find the vector \vec{v} where $\vec{u}=\langle 2,-1\rangle$ and $\vec{w}=\langle 1,2\rangle$. Illustrate the vector operations geometrically.
(a) $\vec{v}=\vec{u}+\vec{w}$
(b) $\vec{v}=5 \vec{u}-3 \vec{w}$
[3] Find the following: $\|\vec{u}\|,\|\vec{v}\|,\|\vec{u}+\vec{v}\|,\left\|\frac{\vec{u}}{\|\vec{u}\|}\right\|,\left\|\frac{\vec{v}}{\|\vec{v}\|}\right\|$, and $\left\|\frac{\vec{u}+\vec{v}}{\|\vec{u}+\vec{v}\|}\right\|$.

$$
\vec{u}=\langle 0,1\rangle
$$

(a) $\vec{v}=\langle 3,-3\rangle$

$$
\text { (b) } \begin{aligned}
\vec{u} & =\langle 2,-4\rangle \\
\vec{v} & =\langle 5,5\rangle
\end{aligned}
$$

[4] Find the coordinates of the point.
(a) The point is located seven units in front of the $y z$-plane, two units to the left of the $x z$-plane, and one unit below the $x y$-plane.
(b) The point is located in the $y z$-plane, three units to the right of the $x z$-plane, and and two units above the $x y$-plane.
[5] What is the x-coordinate of any point in the $y z$-plane.
[6] Find the distance between the given points.
(a) $(-2,3,2),(2,-5,-2)$
(b) $(2,2,3),(4,-5,6)$
[7] Write the equation of the sphere in standard form. State the center and the radius.
(a) $x^{2}+y^{2}+z^{2}+9 x-2 y+10 z+19=0$
[8] Find the vector \vec{v} with magnitude $\sqrt{5}$ and direction of $\vec{u}=\langle-4,6,2\rangle$.
[9] Find the angle θ between the vectors.
(a) $\begin{aligned} \vec{u} & =3 \hat{i}+2 \hat{j}+\hat{k} \\ \vec{v} & =2 \hat{i}-3 \hat{j}\end{aligned}$
$\vec{u}=2 \hat{i}-3 \hat{j}+\hat{k}$
(b)
$\vec{v}=\hat{i}-2 \hat{j}+\hat{k}$
[10] Determine whether \vec{u} and \vec{v} are orthogonal, parallel, or neither.
(a)

$$
\vec{u}=-2 \hat{i}+3 \hat{j}-\hat{k}
$$

$$
\vec{v}=2 \hat{i}+\hat{j}-\hat{k}
$$

(b)

$$
\vec{u}=\langle\cos \theta, \sin \theta,-1\rangle
$$

$$
\vec{v}=\langle\sin \theta,-\cos \theta, 0\rangle
$$

[11] Find the projection of \vec{u} onto \vec{v} and the vector component of \vec{u} orthogonal to \vec{v}.
$\vec{u}=\langle 2,-3\rangle$
$\vec{v}=\langle 3,2\rangle$
(b) $\begin{aligned} \vec{u} & =\langle 1,0,4\rangle \\ \vec{v} & =\langle 3,0,2\rangle\end{aligned}$
[12] Find $\vec{u} \times \vec{v}$ and show that it is orthogonal to both \vec{u} and \vec{v}.
$\vec{u}=\langle-10,0,6\rangle$
(a) $\vec{v}=\langle 7,0,0\rangle$

$$
\vec{u}=\hat{i}+6 \hat{j}
$$

(b) $\vec{v}=-2 \hat{i}+\hat{j}+\hat{k}$
[13] Verify that the points are the vertices of a parallelogram, and find its area. $(2,-3,1),(6,5,-1),(3,-6,4),(7,2,2)$
[14] Find the area of the triangle with the given vertices: $(1,2,0),(-2,1,0),(0,0,0)$

