SI Session: Oct. 27th & 29th, 2008 Mondays: 1:30 PM – 3:00 PM & 4:50 PM – 6:20 PM Wednesdays: 1:30 PM – 3:00 PM & 4:50 PM – 6:20 PM Room 1239 SNAD(Wed. early rm. 1121)

Prof. Stockton : Calculus III Fall 2008 SI Leader : Neil Jody

[1] Find all points on the surface $xy - 2x + z^2 = 8$ at which the plane tangent to the surface is parallel to the plane with equation x + y - 2z = 3.

- [2] Find the absolute extrema of the function over the region R. In each case, R contains the boundaries.
- (a) $f(x, y) = (2x y)^2$

R: The triangular region in the *xy*-plane with vertices (2,0), (0,1), and (1,2).

(b)
$$f(x, y) = x^2 - 4xy + 5$$
, $R = \{(x, y) : 0 \le x \le 4, 0 \le y \le \sqrt{x}\}$

(c)
$$f(x,y) = \frac{4xy}{(x^2+1)(y^2+1)}, R = \{(x,y) : x \ge 0, y \ge 0, x^2 + y^2 \le 1\}$$

[3] Find parametric equations for the line tangent to the curve of intersection of the surfaces $x^2 + 2y^2 + 3z^2 = 36$ and $2x^2 - y^2 + z^2 = 7$ at the point (1, 2, 3).

[4] For each of the following functions, find all local extrema and saddle points.

(a)
$$f(x) = x^3 - 4xy + 2y^2 - 1$$

(b)
$$g(x) = x^2 - 4xy + y^3 + 4y$$

[6] The function $f(x, y, z) = 2x^2 + y^2 + 3z^2$ has a minimum value on the plane 2x - 3y + 4z = 49. Find this minimum value.

- [7] A spider living in a two-dimensional world finds itself in a toxic environment. The toxicity at (x, y) is given by the function $T(x, y) = 4x^2 4xy + y^2$.
 - (a) If the spider is at the point (-2, 1), in which direction should it move in order to *lower* the toxicity the fastest?

(b) Use Lagrange multipliers to determine the points along the parabola $y = x^2$ at which the toxicity is the lowest.

[8] Use Lagrange multipliers to find the *maximum* value of the function $f(x, y, z) = 2xy + 3z^2$ on the sphere $x^2 + y^2 + z^2 = 4$.

Express $\int_{1}^{4} \int_{1}^{\sqrt{x}} x e^{y} dy dx$ as an iterated integral with the reverse order of [9] integration. Reverse the order of integration for $\int_{0}^{\ln 2} \int_{e^{y}}^{2} f(x, y) dx dy$. [10]

[11] Let *D* be the region bounded by the graphs of $x = y^2$ and y = x - 2. Evaluate the integral $\iint_D (6x + 12y^2) dx dy$.