SI Session: Dec. $1^{\text {st }} \& 3^{\text {rd }}, 2008$
Mondays: $\quad 1: 30$ PM $-3: 00$ PM \& 4:50
PM - 6:20 PM
Wednesdays: 1:30 PM - 3:00 PM \&
4:50 PM - 6:20 PM
Room 1239 SNAD(Wed. early rm. 1121)

Prof. Stockton : Calculus III
Fall 2008
SI Leader : Neil Jody
[1] Determine if the following vector field is conservative. If it is, find a potential function.

$$
\vec{F}(x, y)=\left\langle 2 x-y^{2}, y^{3}-2 x y\right\rangle
$$

[2] Let $\vec{F}(x, y, z)=\langle M(x, y, z), N(x, y, z), P(x, y, z)\rangle$ be a vector field. Show that $\operatorname{Div}(\operatorname{Curl} \vec{F})=0$.
[3] Let C be the curve in space parametrized by $\vec{r}(t)=\left(t, t^{2}, 1-t\right)$ for $t \in[0,2]$.
An object moving along C with the orientation prescribed by \vec{r} is acted on by the force field $\vec{F}(x, y, z)=\langle x, x-z, 2 y\rangle$. Calculate the work done by \vec{F}.
[4] A smooth curve C lying in the $x y$-plane begins at the point $(1,1)$ and ends at $(3,2)$ (see figure). Calculate the following line integral:

$$
\int_{C}\left(2 x-y^{2}\right) d x+\left(y^{3}-2 x y\right) d y
$$

[5] Compute the following line integral: $\int_{C}\left(x^{2}+y^{2}\right) d x-x y d y$ where C is the upper arc of the circle $x^{2}+y^{2}=4$, traversed counterclockwise.
[6] Evaluate $\int_{C} y d s$ where C is the path shown below:

[7] Use Green's Theorem to calculate the following line integral:

$$
\int_{C}\left(x^{2}+x y\right) d x+x^{2} y^{3} d y \text { where } C \text { is the boundary of the region } D \text { shown }
$$

below traversed counterclockwise.

[8] Use Green's Theorem to evaluate the line integral $\int_{C} y^{2} d x+6 x y d y$ where C is the path from $(0,0)$ to $(1,0)$ along $y=0$, from $(1,0)$ to $(1,1)$ along $x=1$, and from $(1,1)$ to $(0,0)$ along $y=\sqrt{x}$
[9] Let S represent the portion of the plane $x+y+2 z=4$ lying inside the cylinder $x^{2}+z^{2}=1$.
(a) Give a parametrization of S.
(b) Calculate the surface area of S.
(c) Evaluate $\iint_{S}(4-y) d S$
[10] Let S represent the portion of the paraboloid $z=4-x^{2}-y^{2}$ that lies in the first octant.
(a) Give a parametrization of S.
(b) Calculate the surface area of S.
(c) Evaluate the surface integral $\iint_{S} \frac{x}{\sqrt{17-4 z}} d S$

