SI Session: Dec. 1st & 3rd, 2008 Mondays: 1:30 PM – 3:00 PM & 4:50 PM – 6:20 PM Wednesdays: 1:30 PM – 3:00 PM & 4:50 PM – 6:20 PM Room 1239 SNAD(Wed. early rm. 1121)

Prof. Stockton : Calculus III Fall 2008 SI Leader : Neil Jody

[1] Determine if the following vector field is conservative. If it is, find a potential function.

 $\vec{F}(x,y) = \left< 2x - y^2, y^3 - 2xy \right>$

[2] Let $\vec{F}(x, y, z) = \langle M(x, y, z), N(x, y, z), P(x, y, z) \rangle$ be a vector field. Show that $Div(Curl\vec{F}) = 0$.

[3] Let *C* be the curve in space parametrized by $\vec{r}(t) = (t, t^2, 1-t)$ for $t \in [0, 2]$. An object moving along *C* with the orientation prescribed by \vec{r} is acted on by the force field $\vec{F}(x, y, z) = \langle x, x - z, 2y \rangle$. Calculate the work done by \vec{F} . [4] A smooth curve *C* lying in the *xy*-plane begins at the point (1, 1) and ends at (3, 2) (see figure). Calculate the following line integral:

[5] Compute the following line integral: $\int_{C} (x^2 + y^2) dx - xy dy$ where *C* is the upper arc of the circle $x^2 + y^2 = 4$, traversed counterclockwise.

[7] Use Green's Theorem to calculate the following line integral:

 $\int_{C} (x^{2} + xy)dx + x^{2}y^{3}dy$ where *C* is the boundary of the region *D* shown

below traversed counterclockwise.

[8] Use Green's Theorem to evaluate the line integral $\int_{C} y^2 dx + 6xy dy$ where C

is the path from (0,0) to (1,0) along y = 0, from (1,0) to (1,1) along x = 1, and from (1,1) to (0,0) along $y = \sqrt{x}$

- [9] Let *S* represent the portion of the plane x + y + 2z = 4 lying inside the cylinder $x^2 + z^2 = 1$.
 - (a) Give a parametrization of *S*.
 - (b) Calculate the surface area of *S*.

(c) Evaluate
$$\iint_{S} (4-y) dS$$

- [10] Let *S* represent the portion of the paraboloid $z = 4 x^2 y^2$ that lies in the first octant.
 - (a) Give a parametrization of *S*.
 - (b) Calculate the surface area of *S*.

(c) Evaluate the surface integral
$$\iint_{S} \frac{x}{\sqrt{17-4z}} dS$$