SI Session: Final Exam Review
Saturday, December $6^{\text {th }}$
12:00 PM - 2:00 PM
Monday, December $8^{\text {th }}$
1:30 PM - 3:00 PM
\& 4:50 PM - 6:20 PM
Room 1239 SNAD
[1] Let $\vec{u}=\langle 1,3,-4\rangle$ and $\vec{v}=\langle 2,-2,1\rangle$.
(a) Calculate $\operatorname{proj}_{\vec{u}} \vec{v}$.
(b) Calculate $\vec{u} \times \vec{v}$.
(c) Calculate $(2 \vec{u}-3 \vec{v}) \square(\vec{u}+4 \vec{v})$.
(d) Calculate the area of the parallelogram with adjacent sides \vec{u} and \vec{v}.
[1] (continued from previous page)
(e) Find a vector that has the direction of \vec{u} and the length of \vec{v}.
(f) Determine the value of c so that the vector $\langle c, 1,-2\rangle$ lies in the plane of \vec{u} and \vec{v}.
[2] Find an equation of the plane tangent to the surface $x^{2}+y z^{3}=4$ at the point $(-1,3,1)$.
[3] Find the directional derivative of the function $f(x, y, z)=x y z$ at the point $(1,2,-2)$ in the direction from $(1,2,-2)$ to $(-1,0,-1)$.
[4] Find the absolute extrema of the function $f(x, y)=x^{2}+y^{2}-6 y$ on the closed region bounded by the graphs $y=4-x^{2}$ and $x+y=2$.
[5] Use Lagrange Multipliers to find the maximum and minimum of the function $f(x, y, z)=x+y+z$ on the sphere $x^{2}+y^{2}+z^{2}=4$.
[6] Let $f(x, y)=6 x^{2}-2 x^{3}+3 y^{2}+6 x y$. Find all relative extrema and saddle points for f.
[7] Let D be the region in the $x y$-plane bounded on the left by the y-axis, above by the graph of $x^{2}+y^{2}=4$ and below by the line $y=1$.
Evaluate $\iint_{D} \frac{1}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}} d x d y$ by converting to polar coordinates.

[8] Find parametric equations of the line tangent to the curve generated by $\vec{r}(t)=\left(e^{t-2}, t^{2}-1, \sqrt{t+2}\right)$ at the point $(1,3,2)$.
[9] The position of a particle at time t is given by the function $\vec{r}(t)=\left(\sin t, t^{2}+4 t,-\cos t\right)$.
(a) At what time(s), if any, is the speed of the particle equal to 2 ?
(b) At what time(s), if any, will the velocity and acceleration vectors be orthogonal?
[10] Find the length of the curve generated by $\vec{r}(t)=\left(2 t, t^{2}, \frac{1}{3} t^{3}\right)$ where $0 \leq t \leq 3$.
[11] Let C the line segment generated by $\vec{r}(t)=(2-t, 2 t)$ for $0 \leq t \leq 1$. Evaluate the following line integral: $\int_{C} y d x-2 x d y$
[12] Use Green's Theorem to evaluate the line integral $\int_{C}-y^{3} d x+x^{3} d y$ where C is the circle of radius 2 centered at the origin oriented counterclockwise.
[13] Let Q be the space lying below the inverted cone $z=2-\sqrt{x^{2}+y^{2}}$, above the $x y$-plane, and outside the cylinder $x^{2}+y^{2}=1$ (see figure).
Express $\iiint_{Q}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$ as an iterated integral in cylindrical coordinates. Do not evaluate the integral.

[14] Express as a triple iterated integral the volume of the solid Q in the first octant bounded by the coordinate planes and the graphs of $y^{2}+z^{2}=4$ and $2 z+x=4$ (see diagram below):

[15] Let Q be the region inside the sphere $x^{2}+y^{2}+z^{2}=4$ and above the plane $z=1$ (see figure). Express the volume of Q as triple iterated integral in spherical coordinates. Do not evaluate the integral.

[16] Let C be a smooth curve in the $x y$-plane from $(1,0)$ to $(3,-1)$.
Evaluate the following line integral: $\int_{C}(2 x+y-3) d x+x d y$
[17] Let S be the portion of the cylinder $z=4-x^{2}$ lying in the first octant to the left of the plane $y=3$ (see diagram).
A parametrization of S is
$\vec{r}(u, v)=\left(u, v, 4-u^{2}\right)$
where the domain of \vec{r}
is the region D shown below:

(a) Express the surface area of S as an iterated integral in the variables u and v. Do not evaluate the integral.
(b)Express the surface integral $\iint_{S} x y z d S$ as an iterated integral in the variables u and v. Do not evaluate the integral.
[18] Rewrite the integral $\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{0}^{4-x^{2}-y^{2}} f(x, y, z) d z d y d x$ in the order $d x d z d y$.
[19] Let $\vec{F}(x, y, z)=\left\langle x^{2} y z, 2 x y, x z^{3}\right\rangle$. Calculate
(a) $\operatorname{div} \vec{F}$
(b) curl \vec{F}

