SI Session: Final Exam Review Saturday, December 6th 12:00 PM – 2:00 PM Monday, December 8th 1:30 PM – 3:00 PM & 4:50 PM – 6:20 PM Room 1239 SNAD Prof. Stockton : Calculus III Fall 2008 SI Leader : Neil Jody

[1] Let
$$\vec{u} = \langle 1, 3, -4 \rangle$$
 and $\vec{v} = \langle 2, -2, 1 \rangle$.

(a) Calculate $proj_{\vec{u}}\vec{v}$.

(b) Calculate $\vec{u} \times \vec{v}$.

(c) Calculate $(2\vec{u} - 3\vec{v}) (\vec{u} + 4\vec{v})$.

(d) Calculate the area of the parallelogram with adjacent sides \vec{u} and \vec{v} .

- [1] (continued from previous page)
 - (e) Find a vector that has the direction of \vec{u} and the length of \vec{v} .

(f) Determine the value of c so that the vector $\langle c, 1, -2 \rangle$ lies in the plane of \vec{u} and \vec{v} .

[2] Find an equation of the plane tangent to the surface $x^2 + yz^3 = 4$ at the point (-1,3,1).

[3] Find the directional derivative of the function f(x, y, z) = xyz at the point (1, 2, -2) in the direction from (1, 2, -2) to (-1, 0, -1).

[4] Find the absolute extrema of the function $f(x, y) = x^2 + y^2 - 6y$ on the closed region bounded by the graphs $y = 4 - x^2$ and x + y = 2.

[5] Use Lagrange Multipliers to find the maximum and minimum of the function f(x, y, z) = x + y + z on the sphere $x^2 + y^2 + z^2 = 4$.

[6] Let $f(x, y) = 6x^2 - 2x^3 + 3y^2 + 6xy$. Find all relative extrema and saddle points for f.

[7] Let *D* be the region in the *xy*-plane bounded on the left by the *y*-axis, above by the graph of $x^2 + y^2 = 4$ and below by the line y = 1. Evaluate $\iint_{D} \frac{1}{(x^2 + y^2)^{\frac{3}{2}}} dxdy$ by converting to polar coordinates.

[8] Find parametric equations of the line tangent to the curve generated by $\vec{r}(t) = (e^{t-2}, t^2 - 1, \sqrt{t+2})$ at the point (1,3,2).

- [9] The position of a particle at time t is given by the function $\vec{r}(t) = (\sin t, t^2 + 4t, -\cos t)$.
 - (a) At what time(s), if any, is the speed of the particle equal to 2?

(b) At what time(s), if any, will the velocity and acceleration vectors be orthogonal?

[10] Find the length of the curve generated by $\vec{r}(t) = (2t, t^2, \frac{1}{3}t^3)$ where $0 \le t \le 3$.

[11] Let *C* the line segment generated by $\vec{r}(t) = (2 - t, 2t)$ for $0 \le t \le 1$. Evaluate the following line integral: $\int_C y dx - 2x dy$

[12] Use Green's Theorem to evaluate the line integral $\int_C -y^3 dx + x^3 dy$ where C is the circle of radius 2 centered at the origin oriented counterclockwise.

[13] Let Q be the space lying below the inverted cone $z = 2 - \sqrt{x^2 + y^2}$, above the *xy*-plane, and outside the cylinder $x^2 + y^2 = 1$ (see figure). Express $\iiint_Q (x^2 + y^2 + z^2) dx dy dz$ as an iterated integral in cylindrical coordinates. Do not evaluate the integral.

[14] Express as a triple iterated integral the volume of the solid Q in the first octant bounded by the coordinate planes and the graphs of $y^2 + z^2 = 4$ and 2z + x = 4 (see diagram below):

[15] Let Q be the region inside the sphere $x^2 + y^2 + z^2 = 4$ and above the plane z = 1 (see figure). Express the volume of Q as triple iterated integral in spherical coordinates. Do not evaluate the integral.

[16] Let *C* be a smooth curve in the *xy*-plane from (1,0) to (3,-1). Evaluate the following line integral: $\int_{C} (2x + y - 3) dx + x dy$

- [17] Let S be the portion of the cylinder $z = 4 x^2$ lying in the first octant to the left of the plane y = 3 (see diagram). A parametrization of S is $\vec{r}(u,v) = (u,v,4-u^2)$ where the domain of \vec{r} is the region D shown below: 3 D 2 u
- (a) Express the surface area of S as an iterated integral in the variables u and v. Do not evaluate the integral.

(b)Express the surface integral $\iint_S xyz \, dS$ as an iterated integral in the variables u and v. Do not evaluate the integral.

[18] Rewrite the integral
$$\int_0^2 \int_0^{\sqrt{4-x^2}} \int_0^{4-x^2-y^2} f(x,y,z) dz dy dx$$
 in the order $dx dz dy$.

[19] Let
$$\vec{F}(x, y, z) = \langle x^2 y z, 2xy, xz^3 \rangle$$
. Calculate
(a) div \vec{F}

(b) curl \vec{F}