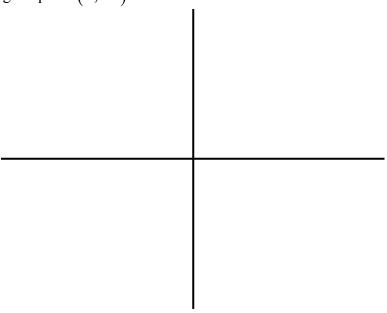
SI Session: Review Exam II

Mondays: 1:30 PM – 3:00 PM & 4:50

PM - 6:20 PM


Wednesdays: 1:30 PM - 3:00 PM &

4:50 PM - 6:20 PM

Room 1239 SNAD(Wed. early rm. 1121)

[1] Let $f(x,y) = 4x^2 + 9y^2$.

(a) Sketch the level curve of f containing the point (0,-2).

Prof. Stockton: Calculus III

SI Leader: Neil Jody

Fall 2008

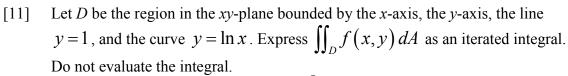
(b) Find the <u>unit</u> vector which points in the direction in which f <u>decreases</u> most rapidly at (0,-2).

[2] Find an equation of the plane tangent to the surface $x^2 + yz^3 = 4$ at the point (-1,3,1).

[3] Find the directional derivative of the function f(x, y, z) = xyz at the point (1,2,-2) in the direction from (1,2,-2) to (-1,0,-1).

[4]	Find the absolute extrema of the function $f(x, y) = x^2 + y^2 - 6y$ on the closed						
	region bounded by the graphs $y = 4 - x^2$ and $x + y = 2$.						

Use Lagrange Multipliers to find the maximum and minimum of the function f(x, y, z) = x + y + z on the sphere $x^2 + y^2 + z^2 = 4$.


[6] Let
$$f(x, y, z) = x \ln y + y^2 \sin(xz)$$
. Calculate f_{yxy} .

[7] Evaluate the integral $\int_{1}^{2} \int_{0}^{\sqrt{4-x^2}} \frac{x}{x^2 + y^2} dy dx$ by first converting to polar coordinates.

[8] Let
$$z = x^2 + xy$$
, $x = rs + 2t$, $y = r^2 - st$. Calculate z_r when $r = 1$, $s = -2$, and $t = 3$.

[9] Let $f(x,y) = 6x^2 - 2x^3 + 3y^2 + 6xy$. Find all relative extrema and saddle points for f.

[10] Let D be the triangular region in the xy-plane bounded by the graphs of x+y=6, y=2x, and 5y=x. Using the change of variables x=5u+v and y=u+2v, express the integral $\iint_D (5y-x)e^{y-2x} dxdy$ as an iterated integral in the variables u and v. Do not evaluate the integral.

[12] Express $\int_0^1 \int_3^{4-x^2} f(x,y) dy dx$ as an iterated integral with the reverse order of integration.

[13] Let *D* be the region in the *xy*-plane bounded by the lines y = 3x, 2y = x, and x = 4. Using the change of variables x = u - 2v and y = 3u - v, evaluate $\iint_D (y - 3x) dy dx$.

[14] Let D be the region in the xy-plane bounded by the lines x + 2y = 2, y = x + 1, and y = -2x + 4. Use the change of variables x = u + 2v and y = u - v + 1 to evaluate the integral $\iint_D (x - y) dA$.

[15]	Evaluate the integral	$\int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} \sin(x^2 - \frac{y^2}{y^2}) dx$	$+y^2$) dxdy by first converting to				
	polar coordinates.			,	l		
				•	•		

[16] Let D be the region in the xy-plane bounded on the left by the y-axis, above by the graph of $x^2 + y^2 = 4$ and below by the line y = 1. Evaluate $\iint_{D} \frac{1}{\left(x^2 + y^2\right)^{\frac{3}{2}}} dx dy$ by converting to polar coordinates.