SI Session: Review Exam I Mondays: 1:30 PM – 3:00 PM Wednesdays: 4:50 PM – 6:20 PM Fridays: 1:00 PM – 2:30 PM Room 1239 SNAD Prof. Stockton : Calculus III Fall 2008 SI Leader : Neil Jody

[1] Match each equation to its graph (write the letter of the graph next to its equation).

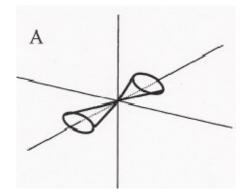
$$y = -x^{2} + z^{2}$$

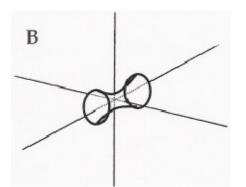
$$-4x^{2} + 9y^{2} + 4z^{2} = 36$$

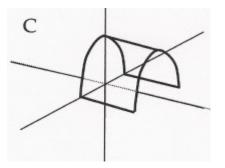
$$y = x^{2} + 4z^{2}$$

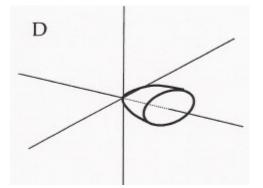
$$-4x^{2} + 9y^{2} + 4z^{2} = 0$$

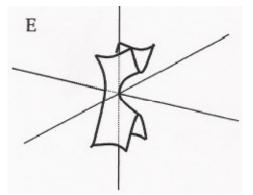
$$z = 4 - x^{2}$$











[2] Let
$$\vec{u} = \langle 1, 3, -4 \rangle$$
 and $\vec{v} = \langle 2, -2, 1 \rangle$.

(a) Calculate $proj_{\vec{u}}\vec{v}$.

(b) Calculate $\vec{u} \times \vec{v}$.

(c) Calculate $(2\vec{u} - 3\vec{v}) (\vec{u} + 4\vec{v})$.

(d) Calculate the area of the parallelogram with adjacent sides \vec{u} and \vec{v} .

- [2] (continued from previous page)
 - (e) Find a vector that has the direction of \vec{u} and the length of \vec{v} .

(f) Determine the value of c so that the vector $\langle c, 1, -2 \rangle$ lies in the plane of \vec{u} and \vec{v} .

[3] To the nearest tenth of a degree, find the angle between the planes x - y + 5z = 1 and -x + 3y - z = 2.

[4] Find the equation of the plane containing the points (1,0,2), (3,-2,-1), and (2,1,1).

[5] Find the length of the curve generated by $\vec{r}(t) = (2t, t^2, \frac{1}{3}t^3)$ where $0 \le t \le 3$.

[6] Find parametric equations of the line tangent to the curve generated by $\vec{r}(t) = (e^{t-2}, t^2 - 1, \sqrt{t+2})$ at the point (1,3,2).

[7] Find the distance from the point (-4,1,3) to the plane 2x - y + 3z = 6.

[8] Find
$$\vec{r}(t)$$
 if $r'(t) = \langle 2t - 2, \sin t, e^t \rangle$ and $\vec{r}(0) = (3, 1, -3)$.

- [9] The position of a particle at time t is given by the function $\vec{r}(t) = (\sin t, t^2 + 4t, -\cos t).$
 - (a) At what time(s), if any, is the speed of the particle equal to 2?

(b) At what time(s), if any, will the velocity and acceleration vectors be orthogonal?

[10] Evaluate the following limit: $\lim_{t\to 2} \left(t^2 \hat{i} - \frac{1}{t} \hat{j} + \cos(t-2) \hat{k} \right).$

[11] Determine if the point (-1, 2, 6) lies on the line given by the parametric equations x = -2 + 3t, y = 6t, z = 3 - 2t.

[12] Find the values of a and b so that $\vec{u} = \langle 2, -1, -5 \rangle$ and $\vec{v} = \langle a, b, -1 \rangle$ are parallel.

[13] A particle is moving along the line containing the point (1,1,2) with direction vector $\langle -1,2,1 \rangle$ at a speed of 4 units per second. The particle intersects the paraboloid $z = x^2 + y^2$ in exactly two points, P_1 and P_2 . How long does it take the particle to travel the distance between P_1 and P_2 ?