SI Session: July $15^{\text {th }}$, 2008
Mondays - Thursdays
12:35 PM - 2:05 PM
Room 1229

Prof. Stockton : Calculus II
Summer II 2008
SI Leader : Neil Jody
[1] Write the following in algebraic form.
(a) $\csc \left(\arctan \frac{x}{\sqrt{2}}\right)$
[2] Evaluate each expression without using a calculator.
(a) $\sec \left[\arctan \left(-\frac{3}{5}\right)\right]$
(b) $\tan \left[\arcsin \left(-\frac{5}{6}\right)\right]$
[3] Differentiate the following with respect to x.
(a) $y=25 \arcsin \frac{x}{5}-x \sqrt{25-x^{2}}$
(b) $f(t)=\arcsin t^{2}$
[4] Find the following Indefinite/Definite Integrals.
(a) $\int \frac{x-1}{\sqrt{x^{2}-2 x}} d x$
(b) $\int \frac{4 x+3}{\sqrt{1-x^{2}}} d x$
(c) $\int \frac{d x}{x^{2}-4 x+5}$
(d) $\int \frac{4 x+5}{x^{2}-4 x+5} d x$
(i) $\int \frac{1}{\sqrt{16-6 x-x^{2}}} d x$
[5] Write a definite integral that represents the Area between the given curves.
(a) $y=\sec ^{2} x, y=2, x=-\frac{\pi}{4}, x=\frac{\pi}{4}$

(b) $f(y)=y(2-y), g(y)=-y$

enclosed by the given curves is revolved about the x-axis.
$y=\sqrt{25-x^{2}}, y=3$

[7] Write a definite integral that represents the volume of the solid that results when the region enclosed by the given curves is revolved about the y-axis.
$x=y^{2}, x=y+2$

Write a definite integral that represents the volume of the solid that results when the region enclosed by $y=\sqrt{x}, y=0, x=9$ is revolved about the line $x=9$.

| | | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |${ }^{2}$

[9] Write a definite integral that represents the volume of the solid that results when the region enclosed by $x=y^{2}$ and $x=y$ is revolved about the line $y=-1$.

