SI Session: Final Exam Review
Wednesday, August $13^{\text {th }}$
12:35 PM - 3:35PM
Room 1229

Prof. Stockton : Calculus II
Summer II 2008
SI Leader : Neil Jody
[1] Let R denote the region in the $x y$-plane bounded by the graphs of $y=\ln x, y=1$, and $y=1-x$. For each of the following, write down an integral representing the volume of the solid obtained by revolving R about the indicated line:
(a) the x-axis
(b) the y-axis
(c) the line $x=-2$
(d) the line $y=2$
(e) the line $x=4$
(f) the line $y=-1$

[2] Let C be the portion of the graph of $y=\cos x+2$ corresponding to $\frac{\pi}{2} \leq x \leq \pi$. Write down an integral representing each of the following:
(a) the length of C
(b) the area of the surface obtained by revolving C about the x-axis
(c) the area of the surface obtained by revolving C about the y-axis
(d) the area of the surface obtained by revolving C about the line $x=4$
(e) the area of the surface obtained by revolving C about the line $y=3$
(f) the area of the surface obtained by revolving C about the line $x=-2$
(g) the area of the surface obtained by revolving C about the line $y=-1$

[3] Let R denote the region in the $x y$-plane bounded by the graphs of the following equations: $x-2 y=1, y=\sqrt{1-x^{2}}$, and $y=1$ (see figure) Write down an integral that represents the area of R.

[4] Differentiate the following with respect to x.
(a) $y=\frac{1}{\tan ^{-1} x}$
(b) $y=\sec \left[\sin ^{-1}(x-1)\right]$
[5] $\int \frac{1}{x \sqrt{1-(\ln x)^{2}}} d x$
[6] Evaluate the limit.
(a) $\lim _{x \rightarrow \infty}\left(5+2 e^{2 x}\right)^{e^{-2 x}}$
[7] Evaluate each integral.
(a) $\int \cos ^{4} x d x$
(b) $\int \tan ^{4} x d x$
(c) $\int e^{2 x} \cos 3 x d x$
(d) $\int x^{3} \ln x d x$
(e) $\int \frac{x}{x^{2}-6 x+5} d x$
(f) $\int \frac{\sqrt{1-4 x^{2}}}{x} d x$
[8] Determine if each of the following improper integrals converges or diverges. If it converges, state its value.
(a) $\int_{3}^{4} \frac{1}{(x-3)^{4 / 3}} d x$
(b) $\int_{0}^{\infty} \frac{1}{4+x^{2}} d x$
[9] Determine if each series is absolutely convergent, conditionally convergent, or divergent. Indicate the onvergence tests used
(a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{(n!)^{2}}{(3 n)!}$
(b) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$
[10] Find a power series representation for $f(x)=x^{3} \arctan (2 x)$ using the Maclaurin series for $\arctan x$.
[11] Find the third degree Taylor polynomial for the function $f(x)=\sqrt{x}$ centered at $x=9$.
[12] Determine the convergence or divergence of the sequence with the given nth tern. If the sequence converges find its limit.
(a) $a_{n}=\frac{\ln \sqrt{n}}{n}$
(b) $a_{n}=2^{1 / n}$
[13] Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{2^{n}}{n}(x-1)^{n}$.
[14] Find a rectangular equation for the curve whose parametrization is given.
(a) $x=t^{2}-1, y=2 t-1$
(b) $x=3 \cos t, y=2 \sin t$
(c) $x=\ln t, y=t^{2}$
[15] Parametrize the curve whose description is given.
(a) the line $2 x+5 y=1$
(b) the circle $(x-1)^{2}+y^{2}=4$
[16] Convert each equation to polar form.
(a) $x^{2}+y^{2}-2 x=0$
(b) $y=3$
[17] Convert each equation to rectangular form.
(a) $r=\sin \theta$
(b) $r=5$

