SI Session: Exam I Review
Monday July $21^{\text {st }}$
12:35 PM - 2:35PM
Room 1229

Prof. Stockton : Calculus II
Summer II 2008
SI Leader : Neil Jody
[1] Evaluate each integral.
(a) $\int \frac{\cos x}{\sin x \sqrt{\sin ^{2}-9}} d x$
(b) $\int \frac{e^{x}}{16+e^{2 x}} d x$
(c) $\int \frac{6}{\sqrt{5-2 x-x^{2}}} d x$
[2] Find each derivative. There is no need to simplify the result.
(a) $f(x)=\cos ^{-1}\left(x^{2}-3 x\right)$
(b) $f(x)=x \arctan (3 x)$
[3] Let R denote the region in the $x y$-plane bounded by the graphs of the following equations:

$$
y=\frac{2}{\sqrt{x}}, y=x+1, \text { and } x=4(\text { see figure })
$$

For each of the following, write down an integral representing the volume of the solid obtained by revolving R about the indicated line.
(a) the x-axis

(b) the y-axis
(c) the line $x=5$
(d) the line $x=-1$
(e) the line $y=5$
(f) the line $y=-1$
[4] Let R denote the region in the $x y$-plane bounded by the graphs of the following equations:

$$
x-2 y=1, y=\sqrt{1-x^{2}}, \text { and } y=1(\text { see figure })
$$

Write down an integral that represents the area of R.

[5] Let C denote the portion of the graph $x=y^{3}-4 y$ for $-1 \leq y \leq 3$. Write down an integral representing the length of C (see figure).

[6] Let C denote the portion of the graph $y=\sqrt{x}+1$ for $1 \leq x \leq 4$ (see figure).
For each of the following, write down an integral that represents the surface area of the surface obtained by revolving C about the indicated line:
(a) the x-axis

(b) the y-axis
(c) the line $x=5$
(d) the line $y=-1$
[7] Let R denote the region in the $x y$-plane inside the circle $(x-2)^{2}+y^{2}=1$ (see figure).
For each of the following, write down an integral representing the volume of the solid obtained by revolving R about the indicated line.
(a) the y-axis

(b) the line $y=1$
(c) the line $x=4$
(d) the line $y=3$

