SI Session: June $23^{\text {rd }}$
Mondays - Thursdays
12:30 PM - 2:00 PM
Room 1229

Prof. Stockton: Calculus I
Summer I 2008
SI Leader : Neil Jody
[1] Find the derivative of each function. DO NOT simplify your answer.
(a) $f(x)=\frac{\sin (\pi x)}{x+3}$
(b) $f(x)=x^{5} \sec \left(\frac{1}{x}\right)$
(c) $f(x)=\frac{2 x}{x^{2}+1}$
(d) $f(x)=(\sqrt{x}+3 x)\left(5 x^{2}-\frac{3}{x}\right)$
(e) $f(x)=\cos ^{3}\left(\frac{x}{x+1}\right)$
(f) $f(x)=\sin (x) \sec (x)$
(g) $f(x)=\frac{x^{2}+\tan (x)}{3 x+2 \tan (x)}$
[2] Find the following derivatives using implicit differentiation.
(a) $\frac{d}{d x}\left[x^{2} y+3 x y^{3}-x=3\right]$
(b) $\frac{d}{d x}\left[x^{2}=\frac{x+y}{x-y}\right]$
(c) $\frac{d}{d x}\left[\cos \left(x y^{2}\right)=y\right]$
[3] A runner starts at a point "A" and heads East at a rate of $10 \mathrm{ft} / \mathrm{sec}$. One minute later another runner starts at "A" heading North at $8 \mathrm{ft} / \mathrm{sec}$. At what rate is the distance between them changing 1 minute after the $2^{\text {nd }}$ runner starts?
[4] Boyle's law for gases states that $\mathrm{pv}=\mathrm{c}$, for pressure p , volume v , and a constant c . At a certain instant the volume in $75 \mathrm{in}^{3}$, the pressure is $30 \mathrm{lb} / \mathrm{in}^{2}$, and the pressure is decreasing at a rate of $2 \mathrm{lb} / \mathrm{in}^{2} / \mathrm{min}$. At what rate is the volume changing at this instant?

