SI Session: March, $3^{\text {rd }} \& 5^{\text {th }}, 2009$
Tuesdays: 3:30 PM - 5:00 PM
Thursdays: 1:30 PM - 3:00 PM \& 3:30 PM - 5:00 PM
Room 1245 SNAD

Prof. Stockton : Calculus I
Spring 2009
SI Leader : Neil Jody
[1] Find the derivative of each function. DO NOT simplify your answer.
a) $f(x)=\left(x^{2}-2 x\right)^{42} \sin x$
b) $g(x)=\sec ^{2} 3 x$
c) $h(x)=\frac{\sqrt{2 x+3}}{x^{3}+2 x-1}$
d) $w(x)=\sin (\sec (\tan x))$
e) $f(x)=\frac{\tan x}{\sqrt{x^{2}-2 x}}$
f) $g(x)=\sqrt{\cos (3 x)}$
g) $h(x)=x^{2} \csc (2 x)$
h) $f(x)=\frac{\sqrt{2 x+3}}{\sin (3 x)}$
i) $f(x)=\left(\sec \left(x^{2}\right)+x\right)^{20}$
j) $f(x)=\left(x^{2}+3 x\right)^{20} \tan x$
[2] Suppose $f^{\prime}(9)=-2$ and $h(x)=x^{2}$. Calculate $(f \circ h)^{\prime}(3)$.
[3] Find the following derivatives using implicit differentiation.
(a) $\frac{d}{d x}\left[x^{2} y+3 x y^{3}-x=3\right]$
(b) $\frac{d}{d x}\left[x^{2}=\frac{x+y}{x-y}\right]$
(c) $\frac{d}{d x}\left[\cos \left(x y^{2}\right)=y\right]$
[4] If $x=\cos y$, find $\frac{d^{2} y}{d x^{2}}$.
[5] For the curve given by $y^{2}+x^{2} y^{3}+11=4 x$, find an equation of the tangent line at the point $(2,-1)$. Write the equation in the form $y=m x+b$.
[6] Find an equation of the line tangent to the graph of $y^{3}-x^{2} y+4 x=7$ at the point $(-2,3)$.
[7] A runner starts at a point "A" and heads East at a rate of $10 \mathrm{ft} / \mathrm{sec}$. One minute later another runner starts at "A" heading North at $8 \mathrm{ft} / \mathrm{sec}$. At what rate is the distance between them changing 1 minute after the $2^{\text {nd }}$ runner starts?
[8] Boyle's law for gases states that $\mathrm{pv}=\mathrm{c}$, for pressure p , volume v , and a constant c . At a certain instant the volume in $75 \mathrm{in}^{3}$, the pressure is $30{\mathrm{lb} / \mathrm{in}^{2} \text {, and the pressure is decreasing at a rate of }}^{\text {a }}$ $2 \mathrm{lb} / \mathrm{in}^{2} / \mathrm{min}$. At what rate is the volume changing at this instant?
[9] A point is moving along the graph of $y=x^{3}-3 x^{2}$ in such a way that the y-coordinate is decreasing at the rate of 3 units/sec (i.e. $\frac{d y}{d t}=-3$). What is $\frac{d x}{d t}$ when $x=1$?
[10] A man 6 ft tall is walking at a rate of $3 \mathrm{ft} / \mathrm{s}$ toward a streetlight 18 ft high. (a) At what rate is his shadow length changing? (b) How fast is the tip of his shadow moving?

Differentiation Properties and Rules:

1. $\frac{d}{d x}[c f(x)]=c \frac{d}{d x}[f(x)]$
2. $\frac{d}{d x}[f(x) \pm g(x)]=\frac{d}{d x}[f(x)] \pm \frac{d}{d x}[g(x)]$
3. $\frac{d}{d x}[\mathrm{f}(x) g(x)]=\mathrm{f}^{\prime}(x) g(x)+\mathrm{f}(x) g^{\prime}(x)$
4. $\frac{d}{d x}\left[\frac{\mathrm{f}(x)}{g(x)}\right]=\frac{\mathrm{f}^{\prime}(\mathrm{x}) g(x)-\mathrm{f}(\mathrm{x}) g^{\prime}(x)}{(g(x))^{2}}$
5. $\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$
6. $\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)$
7. $\frac{d}{d x}[\sin x]=\cos x$
8. $\frac{d}{d x}[\cos x]=-\sin x$
9. $\frac{d}{d x}[\tan x]=\sec ^{2} x$
10. $\frac{d}{d x}[\csc x]=-\csc x \cot x$
11. $\frac{d}{d x}[\sec x]=\sec x \tan x$
12. $\frac{d}{d x}[\cot x]=-\csc ^{2} x$

Trigonometric Identities (you should know):

1. $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$
2. $\tan ^{2}(\theta)+1=\sec ^{2}(\theta)$
3. $1+\cot ^{2}(\theta)=\csc ^{2}(\theta)$
4. $\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$
$\cos (2 \theta)=\left\{\begin{array}{l}\cos ^{2}(\theta)-\sin ^{2}(\theta) \\ 2 \cos ^{2}(\theta)-1 \\ 1-2 \sin ^{2}(\theta)\end{array}\right.$
$\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta$
$\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \sin \beta \cos \alpha$

Properties of Exponents:
$\left(a^{m}\right)^{n}=a^{m n}$
$(a b)^{n}=a^{n} b^{n}$
$a^{m} \cdot a^{n}=a^{m+n}$
$\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}, b \neq 0$
$a^{-n}=\frac{1}{a^{n}}$
$\frac{a^{m}}{a^{n}}=a^{m-n}$
$a^{0}=1$
$a^{1}=a$
$a^{\frac{m}{n}}=\left(a^{\frac{1}{n}}\right)^{m}=(\sqrt[n]{a})^{m}=\sqrt[n]{a^{m}}$
$\sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a \cdot b}$
$\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}, b \neq 0$
$b \sqrt[n]{a} \pm c \sqrt[n]{a}=(b \pm c) \sqrt[n]{a}$
Properties of Logarithms:

For all real numbers y, and all positive numbers a and x, where $a \neq 1$:
$\log _{b} x=y \Leftrightarrow b^{y}=x$
For $x>0, y>0, a>0, a \neq 1$, and any real number r :
$\log _{b} x^{r}=r \cdot \log _{b} x$
$\log _{b} x y=\log _{b} x+\log _{b} y$
$\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$
For any positive real numbers x, a, and b, where $a \neq 1$ and $b \neq 1$:
$\log _{b} x=\frac{\log x}{\log b}=\frac{\ln x}{\ln b}=\frac{\log _{a} x}{\log _{a} b}$

