SI Session: March, $24^{\text {th }} \& 26^{\text {th }}, 2009$
Prof. Stockton : Calculus I
Tuesdays: 3:30 PM - 5:00 PM
Thursdays: 1:30 PM - 3:00 PM \& 3:30 PM - 5:00 PM
Room 1245 SNAD
[1] For each of the following functions, find the open intervals on which the function is increasing or decreasing, and find the relative extrema.
(a) $\quad f(x)=x^{2 / 3}\left(16-x^{2}\right)$
(b) $\quad f(x)=\frac{x^{2}-9}{(x+1)^{2}}$
(c) $\quad f(x)=\frac{12 x}{x^{2}+4}$
[2] For each of the following functions, find the intervals on which the function is concave up or down, and identify any inflection points.
(a) $\quad f(x)=-2 x^{4}+8 x^{3}$
(b) $\quad g(x)=3 x^{5}+10 x^{4}-7$
(c) $\quad h(x)=3 x^{4}+2 x^{3}-12 x^{2}+3 x-2$
[3] The graph of the derivative of a function $f$ is given below. Use the graph to determine each of the following:
(a) the relative maxima of $f$
(b) the relative minima of $f$

[4] Sketch the graph of a function $f$ that satisfies the following conditions:

- $f$ is increasing on $(-\infty,-2)$ and $(1, \infty) ; f$ is decreasing on $(-2,1)$
- $f$ is concave down on $(-\infty,-1)$ and concave up on $(-1, \infty)$
- the graph of $f$ is everywhere smooth

Be sure to label any inflection points.

[5] Find the oblique asymptote for the following functions.
(a) $\quad f(x)=\frac{x^{2}-6 x+12}{x-4}$
(b) $\quad f(x)=\frac{x^{3}-4 x^{2}}{x^{2}-x-12}$
[6] As sand leaks out of a hole in a container, it forms a conical pile whose height is always equal to its radius. If the height of the pile is increasing at a rate of $6 \mathrm{in} / \mathrm{min}$, find the rate at which the sand is leaking out when the height is 10 inches.

