SI Session: March, $10^{\text {th }} \& 12^{\text {th }}, 2009$
Tuesdays: 3:30 PM - 5:00 PM
Thursdays: 1:30 PM - 3:00 PM \& 3:30 PM - 5:00 PM
Room 1245 SNAD
[1] A man 6 ft tall is walking at a rate of $3 \mathrm{ft} / \mathrm{s}$ toward a streetlight 18 ft high. (a) At what rate is his shadow length changing? (b) How fast is the tip of his shadow moving?
[2] A missile is fired vertically from a point which is 5 kilometers from a tracking station and at the same elevation (see figure). For the first 20 seconds of flight its angle of elevation $\theta$ changes at a constant rate of $2^{\circ}$ per second. Find the velocity of the missile 15 seconds after launching.

[3] The area of an equilateral triangle is decreasing at a rate of $4 \mathrm{~cm}^{2} / \mathrm{min}$. Find the rate at which the length of a side is changing when the area of the triangle is $200 \mathrm{~cm}^{2}$.
[4] ] For the following find the derivative and critical values of $f$.
(a) $f(x)=x-\sin (x)$
(b) $f(x)=\frac{3 x}{\sqrt{4 x^{2}+1}}$
(c) $f(x)=\sqrt{x^{2}-3 x-10}$
(d) $f(x)=\frac{x^{2}-9}{(x+1)^{2}}$
(e) $f(x)=\sin ^{2}(x)+\cos (x)$
(f) $f(x)=\sin ^{2}(x)$
(g) $f(x)=x-x^{2 / 3}$
[5] If $x=\tan y$, calculate $\frac{d^{2} y}{d x^{2}}$.
[6] Find the absolute maximum and minimum values of $f(x)=x-3 x^{2 / 3}+4$ on the interval $\left[-8, \frac{125}{8}\right]$.
[7] Find the absolute extrema of the function $f(x)=\frac{1}{2} \cos 2 x+\sqrt{3} \sin x$ on the interval [0, $\pi$ ].
[8] Find the open intervals on which $g(x)=\frac{x^{4}+1}{x^{2}}$ is increasing or decreasing, and find the relative extrema.
[9] Fill in the blank: if $f$ is continuous on $[-1,3]$ and differentiable on $(-1,3)$ and if $f(-1)=5$ and $f(3)=15$, then the Mean Value Theorem guarantees the existence of a number $c$ between -1 and 3 such that $f^{\prime}(c)=$ $\qquad$ .
[10] Determine if the function $f(x)=x-\sqrt[3]{x}$ satisfies the hypotheses of the Mean Value Theorem on the interval $[-8,1]$.

