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[1] You are designing an athletic field in the shape of a rectangle x meters long capped at two  

 ends by semicircular regions of radius r. The boundary of the field is to be a 400 meter  

 track. What values of x and r will give the rectangle its greatest area? 
 

       

 

 

 

 

[2]  Find the function  f  that satisfies the following conditions: 

 

a) ( ) ( )36 8 , 2 3f s s s f′ = − =  

b) xxf sin)( =′′ , 2)0( =′f , 1)( −=πf  

 

 

[3]  Find the function f with the following properties: 

 

  (i)  xxf 6)( =′′  and  

(ii) its graph contains the point (2, 9) and has a horizontal tangent there. 

 

[4] On the moon, the acceleration due to gravity is -1.6 meters per second per second. A stone is 

dropped from a cliff on the moon and hits the surface 20 seconds later. How far did it fall? 

What was its velocity on impact?  

 

[5]  A particle initially at rest, moves along the x-axis such that its acceleration at time  t >0 is 

given by ( ) ( ) cosa t x t t′′= = . At the time 0t = , its position is 3x = . 

a) Find the velocity and position functions for the particle. 

b) Find the values for t for which the particle is at rest. 

 

[6]   

a) Find the exact area of the region below the graph of 24 xy −= , above the x-axis and between 

the lines 2−=x  and 1=x , by taking the limit of a Riemann sum. 

 

b) Find the exact area of the region below the graph of 12 += xy , above the x-axis and between 

the lines 0=x  and 3=x , by taking the limit of a Riemann sum. 
 

[7] Evaluate each integral. 
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42lim  as a definite integral over the interval [1,5] where ic  is  

  any point in the ith subinterval. 
 

[9] Calculate 
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