SI Session: April, $21^{\text {st }} \& 23^{\text {rd }}, 2009$
Tuesdays: 3:30 PM - 5:00 PM
Thursdays: 1:30 PM - 3:00 PM \& 3:30 PM - 5:00 PM
Room 1245 SNAD

Prof. Stockton : Calculus I
Spring 2009
SI Leader : Neil Jody
[1] You are designing an athletic field in the shape of a rectangle x meters long capped at two ends by semicircular regions of radius r. The boundary of the field is to be a 400 meter track. What values of x and r will give the rectangle its greatest area?

[2] Find the function f that satisfies the following conditions:
a) $f^{\prime}(s)=6 s-8 s^{3}, f(2)=3$
b) $f^{\prime \prime}(x)=\sin x, f^{\prime}(0)=2, f(\pi)=-1$
[3] Find the function f with the following properties:
(i) $f^{\prime \prime}(x)=6 x$ and
(ii) its graph contains the point $(2,9)$ and has a horizontal tangent there.
[4] On the moon, the acceleration due to gravity is -1.6 meters per second per second. A stone is dropped from a cliff on the moon and hits the surface 20 seconds later. How far did it fall? What was its velocity on impact?
[5] A particle initially at rest, moves along the x-axis such that its acceleration at time $t>0$ is given by $a(t)=x^{\prime \prime}(t)=\cos t$. At the time $t=0$, its position is $x=3$.
a) Find the velocity and position functions for the particle.
b) Find the values for t for which the particle is at rest.
[6]
a) Find the exact area of the region below the graph of $y=4-x^{2}$, above the x-axis and between the lines $x=-2$ and $x=1$, by taking the limit of a Riemann sum.
b) Find the exact area of the region below the graph of $y=2 x+1$, above the x-axis and between the lines $x=0$ and $x=3$, by taking the limit of a Riemann sum.
[7] Evaluate each integral.
(a) $\int \frac{2 x^{2}-x+3}{\sqrt{x}} d x$
(b) $\int \frac{3 x}{4+x^{2}} d x$
(c) $\int \frac{3 x+6}{\sqrt[3]{x^{2}+4 x-3}} d x$
(d) $\int \sec ^{2}\left(\frac{x}{3}\right) \tan ^{2}\left(\frac{x}{3}\right) d x$
(e) $\int \frac{3 \cos \left(4+\frac{1}{x}\right)}{x^{2}} d x$
(f) $\int_{0}^{\pi / 2} \sin x \cos ^{2} x d x$
(g) $\int_{-2}^{3}|2 x-4| d x$
[8] Express $\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n}\left(2 c_{i} \sqrt{\left(c_{i}\right)^{2}+4}\right) \Delta x_{i}$ as a definite integral over the interval [1,5] where c_{i} is any point in the i th subinterval.
[9] Calculate $\frac{d y}{d x}$ if $y=\int_{x^{2}}^{x^{3}} \sqrt{1+t^{3}} d t$.

