SI Session: Exam II Review

Tuesdays: 3:30 PM – 5:00 PM

Thursdays: 1:30 PM – 3:00 PM

& 3:30 PM - 5:00 PM

Room 1245 SNAD

Prof. Stockton: Calculus I

Spring 2009

SI Leader: Neil Jody

[1] Find the derivative of each function. Do not simplify.

(a)
$$f(x) = x^2 \sec x$$

(b)
$$f(x) = \frac{2x}{x^2 + 5}$$

(c)
$$f(x) = \frac{\sqrt{x^2 + 3}}{\sin(4x)}$$

(d)
$$f(x) = (x^3 - 2x^2)^{15} \tan x$$

(e)
$$f(x) = \sqrt[3]{\cos(x^2)}$$

[2] Find the absolute extrema of the function $f(x) = \frac{2x}{x^2 + 1}$ on the interval [0,2].

[3] Let $f(x) = \sqrt[3]{x}(x-8)$. Find each of the following:

- (a) open interval(s) on which f is increasing _____
- (b) open interval(s) on which f is decreasing
- (c) relative minima
- (d) relative maxima

[4] Let $f(x) = x^4 - 6x^3$. Find each of the following:

- (a) open interval(s) on which f is concave up
- (b) open interval(s) on which f is concave down
- (c) inflection points of f

[5] Use implicit differentiation to find $\frac{dy}{dx}$ if $xy = \cos(y^2)$.

[6] Find the slant asymptote of the function $f(x) = \frac{x^3 - x^2 + 2x + 3}{x^2 + 2}$.

[7] The area of a circle is increasing at the rate of 4 in^2/min . At what rate is the radius increasing when the area is $30 in^2$?

[8] Fill in the blank: Let $f(x) = x^3 + 2x - 3$. The *Mean Value Theorem* guarantees that there is at least one number c between -1 and 2 such that f'(c) =______.

[9] Sketch the graph of a function f satisfying the following conditions:

(i)
$$f(0)=3$$
, $f(1)=2$, $f(2)=1$, $f(4)=0$

- (ii) the line x = 3 is a vertical asymptote
- (iii) f is increasing on $(-\infty,0)$, (2,3) and decreasing on (0,2), $(3,+\infty)$
- (iv) f is concave up on (1,3),(3,4) and concave down on $(-\infty,1),(4,+\infty)$
- (v) the graph of f is "smooth"

[10] Find an equation of the tangent line to the graph of $x^3y + y^2 - 3x = 9$ at the point (-1,3).

[11] Consider the right triangle shown to the right:

If y is decreasing at the rate of 2 ft/sec, find the rate at which x is decreasing when y is 30 ft.

- [12] The graph of the *derivative* of a function *f* is given below. Use the graph to determine each of the following:
 - a) intervals where f is increasing
 - b) intervals where f is decreasing
 - c) the relative maxima of f
 - d) the relative minima of f

- [13] Given the graph of y = f(x) below, determine the following:
 - a) intervals where f' < 0
 - b) intervals where f' > 0
 - c) the relative maxima of f
 - d) the relative minima of f
 - e) intervals where f'' > 0
 - f) intervals where f'' < 0
 - g) Inflection points
 - h) intervals where f is continuous
 - i) intervals where f is differentiable

