SI Session: Exam II Review
Tuesdays: 3:30 PM - 5:00 PM
Thursdays: 1:30 PM - 3:00 PM \& 3:30 PM - 5:00 PM
Room 1245 SNAD

Prof. Stockton : Calculus I
Spring 2009
SI Leader : Neil Jody
[1] Find the derivative of each function. Do not simplify.
(a) $f(x)=x^{2} \sec x$
(b) $f(x)=\frac{2 x}{x^{2}+5}$
(c) $f(x)=\frac{\sqrt{x^{2}+3}}{\sin (4 x)}$
(d) $f(x)=\left(x^{3}-2 x^{2}\right)^{15} \tan x$
(e) $f(x)=\sqrt[3]{\cos \left(x^{2}\right)}$
[2] Find the absolute extrema of the function $f(x)=\frac{2 x}{x^{2}+1}$ on the interval $[0,2]$.
[3] Let $f(x)=\sqrt[3]{x}(x-8)$. Find each of the following:
(a) open interval(s) on which f is increasing \qquad
(b) open interval(s) on which f is decreasing \qquad
(c) relative minima
(d) relative maxima
[4] Let $f(x)=x^{4}-6 x^{3}$. Find each of the following:
(a) open interval(s) on which f is concave up
(b) open interval(s) on which f is concave down \qquad
(c) inflection points of f
[5] Use implicit differentiation to find $\frac{d y}{d x}$ if $x y=\cos \left(y^{2}\right)$.
[6] Find the slant asymptote of the function $f(x)=\frac{x^{3}-x^{2}+2 x+3}{x^{2}+2}$.
[7] The area of a circle is increasing at the rate of $4 \mathrm{in}^{2} / \mathrm{min}$. At what rate is the radius increasing when the area is $30 \mathrm{in}^{2}$?
[8] Fill in the blank: Let $f(x)=x^{3}+2 x-3$. The Mean Value Theorem guarantees that there is at least one number c between -1 and 2 such that $f^{\prime}(c)=$ \qquad .
[9] Sketch the graph of a function f satisfying the following conditions:
(i) $f(0)=3, f(1)=2, f(2)=1, f(4)=0$
(ii) the line $x=3$ is a vertical asymptote
(iii) f is increasing on $(-\infty, 0),(2,3)$ and decreasing on $(0,2),(3,+\infty)$
(iv) f is concave up on $(1,3),(3,4)$ and concave down on $(-\infty, 1),(4,+\infty)$
(v) the graph of f is "smooth"

[10] Find an equation of the tangent line to the graph of $x^{3} y+y^{2}-3 x=9$ at the point $(-1,3)$.
[11] Consider the right triangle shown to the right:
If y is decreasing at the rate of $2 \mathrm{ft} / \mathrm{sec}$, find the rate at which x is decreasing when y is 30 ft .

[12] The graph of the derivative of a function f is given below. Use the graph to determine each of the following:
a) intervals where f is increasing
b) intervals where f is decreasing
c) the relative maxima of f
d) the relative minima of f

[13] Given the graph of $y=f(x)$ below, determine the following:
a) intervals where $f^{\prime}<0$
b) intervals where $f^{\prime}>0$
c) the relative maxima of f
d) the relative minima of f
e) intervals where $f^{\prime \prime}>0$
f) intervals where $f^{\prime \prime}<0$
g) Inflection points
h) intervals where f is continuous
i) intervals where f is differentiable

