SI Session: Review Exam I
Tuesdays: 3:30 PM - 5:00 PM
Thursdays: 1:30 PM - 3:00 PM \& 3:30 PM - 5:00 PM
Room 1245 SNAD

Prof. Stockton : Calculus I
Spring 2009
SI Leader : Neil Jody

Part One: To be done without the use of a calculator.
[1] Evaluate each limit, if it exists. Your answer should be a number, $\infty,-\infty$, or DNE .
(a) $\lim _{x \rightarrow-3} \frac{x^{2}+2 x}{|3 x-1|}$
(b) $\lim _{x \rightarrow-\infty} \frac{\sqrt{5 x^{2}+1}}{2 x-3}$
(c) $\lim _{x \rightarrow 2^{-}} \frac{|x-2|}{2 x-4}$
(d) $\lim _{x \rightarrow 5} \frac{x^{2}-4 x-5}{x^{2}-8 x+15}$
[1] (continued)
(e) $\lim _{x \rightarrow-\infty} \frac{|x+1|}{3 x-1}$
(f) $\lim _{x \rightarrow 2^{+}} f(x)$ where, $f(x)= \begin{cases}x+3 & \text { if } x \leq 2 \\ 2 x-1 & \text { if } x>2\end{cases}$
(g) $\lim _{x \rightarrow 0} \frac{\sin 3 x}{2 x}$
(h) $\lim _{x \rightarrow+\infty} \frac{x^{3}+x^{2}+5 x+4}{3-x^{2}}$
(i) $\lim _{x \rightarrow 4^{-}} \frac{3-2 x}{x-4}$
(j) $\lim _{x \rightarrow 2} \frac{1-\sqrt{2 x-3}}{x-2}$
[1] (continued)
(k) $\lim _{x \rightarrow 0} \frac{\sin x}{1+\cos x}$

$$
\text { (1) } \lim _{h \rightarrow 0} \frac{\frac{1}{x+h-3}-\frac{1}{x-3}}{h}
$$

[2] Let $f(x)=\frac{\sin x}{x^{2}+2 x}$. Find the discontinuities of f and determine if each is removable or nonremovable.
[3] Find the vertical and horizontal asymptotes of the function $f(x)=\frac{x^{2}+2 x+1}{x^{2}+6 x+5}$.
[4] Use the definition of the derivative to find the derivative of $f(x)=\sqrt{3-x}$.
[5] Let $f(x)=\left\{\begin{array}{l}x^{4}-2 x \text { if } x<1 \\ 2 x-3 \text { if } x \geq 1\end{array}\right.$
(a) Determine if f is continuous at $x=1$.
(b) Determine if f is differentiable at $x=1$.
[6] Let $f(x)=4 x-1$. Find the Largest real number $\delta>0$ such that if $0<|x-1|<\delta$, then $|f(x)-3|<0.02$.
[7] Find the derivatives of each of the following functions. Do not simplify the result.
(a) $f(x)=\frac{x^{3}-2 x+\sqrt{x}}{x^{2}}$
(b) $f(x)=-3 \sin x+\frac{4}{5} \cos x$
[8] A ball is propelled upward from a platform 144 feet high. Neglecting air resistance, its height S above the ground at time t is given by the position function $s(t)=-16 t^{2}+48 t+144$, where t is seconds and S is in feet.
(a) Find the average velocity of the ball during the time interval $[0,4]$.
(b) Find the instantaneous velocity when $t=3$.
(c) Find the maximum height of the ball above the ground.
[9] Find an equation of the tangent line to the graph of $f(x)=x^{4}-3 x^{3}+5 x^{2}-3 x+1$ at the point $(2,7)$.
[10] Let f be the function whose graph is shown below. Use the graph to answer each of the following questions:
(a) Find $\lim _{x \rightarrow 1^{-}} f(x)$
(b) Find $\lim _{x \rightarrow 2} f(x)$

(c) Is f differentiable at $x=2$? Explain.
(d) Is f differentiable at $x=4$? Explain.
[11] For each of the following functions, find the discontinuities and classify as removable or nonremovable. In order to receive full credit you must justify your answer analytically.

(b) $f(x)=\frac{6 x^{2}-11 x+3}{2 x^{2}-x-3}$
(c) $f(x)=\frac{|x-1|}{x-1}$
[12] Find the value of k that will make the function $f(x)=\left\{\begin{array}{ll}x^{2}+4 & \text { if } x \leq 0 \\ k \cos x & \text { if } x>0\end{array}\right.$ continuous at 0.
[13] Find the derivatives of each of the following functions. Do not simplify the result.
(a) $f(x)=2 x^{3}-x^{2}+3 x$
(b) $y=\frac{5}{(2 x)^{3}}+2 \cos x$
(c) $f(x)=x^{2}-3 x-3 x^{-2}$
(d) $h(x)=\frac{2 x^{2}-3 x+1}{x}$
(e) $f(x)=\frac{2}{\sqrt[3]{x}}+3 \cos x$

