SI Session Week 7
Thursdays 4:00-5:30 PM, Rm. 1229
Fridays 2:00-3:30 PM. Rm. 1223

Directions: Evaluate and/or calculate as indicated.

1. Rolle's Theorem: Let f be continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b). If $f(a)=f(b)$, then there is at least one point c in the interval (a, b) such that $f^{\prime}(c)=0$.
What does this mean?
2. Mean-Value Theorem: Let f be continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b). Then there is at least one point c in (a, b) such that
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
What does this mean?
3. Find the extrema of $f(x)=\sqrt[3]{x^{2}}-x$, on the interval $[-1,2]$
4. A stone is dropped into a lake causing circular waves whose radii increase at a constant rate $0 \mathrm{f} 0.5 \mathrm{~m} / \mathrm{sec}$. At what rate is the circumference of a wave changing when its radius is 4 m ?
5. Boyle's law for gases states that $\mathrm{p} v=\mathrm{c}$, for pressure p , volume v , and a constant c . At a certain instant the volume in $75 \mathrm{in}^{3}$, the pressure is $30 \mathrm{lb} / \mathrm{in}^{2}$, and the pressure is decreasing at a rate of 2 $\mathrm{lb} / \mathrm{in}^{2} / \mathrm{min}$. At what rate is the volume changing at this instant?
6. $\frac{d}{d x}\left[x^{2}=\frac{x+y}{x-y}\right]$
7. $\frac{d}{d x}\left[\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=1\right]$
8. $\frac{d}{d x}\left[\sqrt{x} \tan ^{3}(\sqrt{x})\right]$
9. $\frac{d}{d x}\left[x^{5} \sec \left(\frac{1}{x}\right)\right]$
10. $\frac{d^{2} y}{d x^{2}}\left[x \cos (5 x)-\sin ^{2}(x)\right]$
11. $\frac{d^{2} y}{d x^{2}}\left[x \tan \left(\frac{1}{x}\right)\right]$

Prof. Stockton : Calculus I : Fall 2007
SI Leader : Neil Jody

Tips: $\frac{d}{d x}[\mathrm{f}(x) g(x)]=\mathrm{f}(x) g^{\prime}(x)+g(x) \mathrm{f}^{\prime}(x)$
$\frac{d}{d x}\left[\frac{\mathrm{f}(x)}{g(x)}\right]=\frac{g(x) \mathrm{f}^{\prime}(\mathrm{x})-\mathrm{f}(\mathrm{x}) g^{\prime}(x)}{(g(x))^{2}}$
12.

$$
\text { If } y=\sec ^{3}\left(\frac{\pi}{2}-x\right)
$$

$$
\text { find equation of tangent line at } x=-\frac{\pi}{2}
$$

For the following find the derivative and critical values of f.
13. $f(x)=x-\sin (x)$
14. $f(x)=\frac{3 x}{\sqrt{4 x^{2}+1}}$
15. $f(x)=\sqrt{x^{2}-3 x-10}$
16. $f(x)=\frac{x^{2}-9}{(x+1)^{2}}$
17. $f(x)=\sqrt{x}(x-2)^{2}$
18. $f(x)=x-x^{2 / 3}$
19. $f(x)=\sin ^{2}(x)$
20. $f(x)=\cos (x)-\sin (2 x)$
21. $f(x)=\cos (2 x)+\cos (x)$
22. $f(x)=\sin ^{2}(x)+\cos (x)$

Find the Extrema and Mean Values on in the given intervals.
23. $f(x)=\cos (x) ;[\pi / 2,3 \pi / 2]$
24. $f(x)=\frac{1}{2} x-\sqrt{x} ;[0,4]$
25. $f(x)=\frac{1}{X^{2}}-\frac{4}{3 X}+\frac{1}{3} ;[1,3]$

