SI Session Week 7 Thursdays 4:00 – 5:30 PM, Rm. 1229 Fridays 2:00 – 3:30 PM. Rm. 1223

Directions: Evaluate and/or calculate as indicated.

1. Rolle's Theorem: Let *f* be continuous on the closed interval [a,b] and differentiable on the open interval (a,b). If f(a)=f(b), then there is at least one point c in the interval (a,b) such that f'(c) = 0.

What does this mean?

2. Mean-Value Theorem: Let f be continuous on the closed interval [a,b] and differentiable on the open interval (a,b). Then there is at least one point c in (a,b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

What does this mean?

3. Find the extrema of
$$f(x) = \sqrt[3]{x^2} - x$$
, on the interval $[-1, 2]$

- 4. A stone is dropped into a lake causing circular waves whose radii increase at a constant rate 0f 0.5m/sec. At what rate is the circumference of a wave changing when its radius is 4m?
- 5. Boyle's law for gases states that pv=c, for pressure p, volume v, and a constant c. At a certain instant the volume in $75 in^3$, the pressure is $30 lb/in^2$, and the pressure is decreasing at a rate of 2 lb/in^2 /min. At what rate is the volume changing at this instant?

6.
$$\frac{d}{dx} \left[x^2 = \frac{x+y}{x-y} \right]$$

7.
$$\frac{d}{dx} \left[\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{y}} = 1 \right]$$

8.
$$\frac{d}{dx} \left[\sqrt{x} \tan^3 \left(\sqrt{x} \right) \right]$$

9.
$$\frac{d}{dx} \left[x^5 \sec \left(\frac{1}{x} \right) \right]$$

10.
$$\frac{d^2 y}{dx^2} \left[x \cos(5x) - \sin^2(x) \right]$$

11.
$$\frac{d^2 y}{dx^2} \left[x \tan \left(\frac{1}{x} \right) \right]$$

Prof. Stockton : Calculus I : Fall 2007 SI Leader : Neil Jody

Tips:
$$\frac{d}{dx} \left[f(x)g(x) \right] = f(x)g'(x) + g(x)f'(x)$$
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$$

If $y = \sec^3\left(\frac{\pi}{2} - x\right)$,

12.

find equation of tangent line at $x = -\frac{\pi}{2}$

For the following find the derivative and critical values of *f*.

13.
$$f(x) = x - \sin(x)$$

14. $f(x) = \frac{3x}{\sqrt{4x^2 + 1}}$
15. $f(x) = \sqrt{x^2 - 3x - 10}$
16. $f(x) = \frac{x^2 - 9}{(x+1)^2}$
17. $f(x) = \sqrt{x}(x-2)^2$
18. $f(x) = x - x^{\frac{2}{3}}$
19. $f(x) = \sin^2(x)$
20. $f(x) = \cos(x) - \sin(2x)$
21. $f(x) = \cos(2x) + \cos(x)$
22. $f(x) = \sin^2(x) + \cos(x)$
Find the Extrema and Mean Values

Find the Extrema and Mean Values on in the given intervals.

23. $f(x) = \cos(x); [\frac{\pi}{2}, \frac{3\pi}{2}]$ 24. $f(x) = \frac{1}{2}x - \sqrt{x}; [0, 4]$ 25. $f(x) = \frac{1}{X^2} - \frac{4}{3X} + \frac{1}{3}; [1, 3]$