SI Session Week 6
Thursdays 4:00-5:30 PM, Rm. 1229
Fridays 2:00-3:30 PM. Rm. 1223
Directions: Evaluate and/or calculate as indicated.

1. A runner starts at a point " A " and heads East at a rate of $10 \mathrm{ft} / \mathrm{sec}$. One minute later another runner starts at "A" heading North at 8 $\mathrm{ft} / \mathrm{sec}$. At what rate is the distance between them changing 1 minute after the $2^{\text {nd }}$ runner starts?
2. The area of an equilateral triangle is decreasing at a rate of $4 \mathrm{~cm}^{2}$ $/ \mathrm{min}$. Find the rate at which the length of a side is changing when the area of the triangle is $200 \mathrm{~cm}^{2}$.
3. A baseball diamond has the shape of a square with sides 60 ft long. If a player is running from second base to third at a speed of $24 \mathrm{ft} / \mathrm{sec}$, at what rate I her distance from home plate changing when she is 20 ft from third?
4. A stone is dropped into a lake causing circular waves whose radii increase at a constant rate $0 \mathrm{f} 0.5 \mathrm{~m} / \mathrm{sec}$. At what rate is the circumference of a wave changing when its radius is 4 m ?
5. Boyle's law for gases states that $\mathrm{p} v=\mathrm{c}$, for pressure p , volume v , and a constant c . At a certain instant the volume in $75 \mathrm{in}^{3}$, the pressure is $30 \mathrm{lb} / \mathrm{in}^{2}$, and the pressure is decreasing at a rate of 2 $\mathrm{lb} / \mathrm{in}^{2} / \mathrm{min}$. At what rate is the volume changing at this instant?
6. Gas is escaping from a spherical balloon at a rate of $10 \mathrm{ft}^{3} / h r$. At what rate is the radius changing when the volume is $400 \mathrm{ft}^{3}$?
7. $\frac{d}{d x}\left[\cos \left(x y^{2}\right)=y\right]$
8. $\frac{d}{d x}\left[\tan ^{3}\left(x y^{2}+y\right)=x\right]$
9. $\frac{d}{d x}\left[x^{2} y+3 x y^{3}-x=3\right]$
10. $\frac{d}{d x}\left[x^{3}+y^{3}=3 x y^{2}\right]$
11. $\frac{d}{d x}\left[x^{2}=\frac{x+y}{x-y}\right]$
12. $\frac{d}{d x}\left[\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=1\right]$
13. $\frac{d}{d x}\left[\frac{x^{2} y^{3}}{1+\sec (y)}=1+y^{4}\right]$

Prof. Stockton : Calculus I : Fall 2007
SI Leader : Neil Jody

Tips: $\frac{d}{d x}[\mathrm{f}(x) g(x)]=\mathrm{f}(x) g^{\prime}(x)+g(x) \mathrm{f}^{\prime}(x)$

$$
\frac{d}{d x}\left[\frac{\mathrm{f}(x)}{g(x)}\right]=\frac{g(x) \mathrm{f}^{\prime}(\mathrm{x})-\mathrm{f}(\mathrm{x}) g^{\prime}(x)}{(g(x))^{2}}
$$

14. $\frac{d}{d x}\left[\tan ^{4}\left(x^{3}\right)\right]$
15. $\frac{d}{d x}\left[\cos ^{3}\left(\frac{x}{x+1}\right)\right]$
16. $\frac{d}{d x}[\sqrt{\cos (5 x)}]$
17. $\frac{d}{d x}\left[\sqrt{3 x-\sin ^{2}(4 x)}\right]$
18. $\frac{d}{d x}\left\{\left[x+\csc \left(x^{3}+3\right)\right]^{-3}\right\}$
19. $\frac{d}{d x}\left[\sqrt{x} \tan ^{3}(\sqrt{x})\right]$
20. $\frac{d}{d x}\left[x^{5} \sec \left(\frac{1}{x}\right)\right]$
21. $\frac{d}{d x}\left[\frac{1+\csc \left(x^{2}\right)}{1-\cot \left(x^{2}\right)}\right]$
22. $\frac{d}{d x}\left[\frac{(2 x+3)^{3}}{\left(4 x^{2}-1\right)^{8}}\right]$

If $y=\sec ^{3}\left(\frac{\pi}{2}-x\right)$,
23.
find equation of tangent line at $X=-\frac{\pi}{2}$
24. $\frac{d^{2} y}{d x^{2}}\left[x \cos (5 x)-\sin ^{2}(x)\right]$
25. $\frac{d^{2} y}{d x^{2}}\left[x \tan \left(\frac{1}{x}\right)\right]$
26. Find the extrema of $f(x)=\sqrt[3]{x^{2}}-x$, on the interval $[-1,2]$

