SI Session Week 10
Thursdays 4:00-5:30 PM, Rm. 1229
Fridays 2:00-3:30 PM. Rm. 1223
Directions: Evaluate and/or calculate as indicated.

1. A wire 36 cm long is cot into two pieces. One of the pieces will be bent into the shape of an equilateral triangle and the other into the shape of a rectangle whose length is twice its width. Where should the wire be cut if the combined area of the triangle and rectangle is (a) minimized? (b) maximized?
2. A window has the shape of a rectangle surmounted by a semicircle. If the perimeter of the window is 15 ft , find the dimensions that will allow the maximum amount of light to enter.

Use the given information to evaluate and compare $d y$ and Δy.
3. $y=\sqrt{3 x-2} ;$ from $x=2$ to $x=2.03$
4. $y=\sqrt{x^{2}+8}$; from $x=1$ to $x=0.97$
5. $y=\frac{x}{x^{2}+1} ;$ from $x=2$ to $x=2.96$
6. $y=x \sqrt{8 x+1}$; from $x=3$ to $x=3.05$

Use the limit process to find the area of the region between the graph of the function and the x -axis over the given interval.
7. $f(x)=2 x-2 x^{2}, x \in[0,1]$
8. $f(x)=x^{3}-1, x \in[0,2]$
1.) $\Delta x=\frac{b-a}{n}$
2.) the right endpoint of the $k^{t h}$ interval is $a+k \Delta x$.
3.) $S_{n}=\sum_{k=1}^{n} f(a+k \Delta x) \Delta x$
4.) Area $=\lim _{n \rightarrow \infty} S_{n}$

Prof. Stockton : Calculus I : Fall 2007
SI Leader : Neil Jody

Tips: $\int c f(x) d x=c \int f(x) d x$,

$$
\begin{aligned}
& \int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x \\
& \int x^{n} d x=\frac{x^{n+1}}{n+1}+C, \text { if } n \neq-1
\end{aligned}
$$

"What function's derivative is the integrand?"
9. $\int\left[3 \sin x-2 \sec ^{2} x\right] d x$
10. $\int\left[\csc ^{2} t-\sec t \tan t\right] d t$
11. $\int \sec x(\sec x+\tan x) d x$
12. $\int \csc x(\sin x+\cot x) d x$
13. $\int \frac{\sec \theta}{\cos \theta} d \theta$
14. $\int \frac{d y}{\csc y}$
15. $\int \frac{\sin x}{\cos ^{2} x} d x$
16. $\int\left[\phi+\frac{2}{\sin ^{2} \phi}\right] d \phi$
17. $\int\left[1+\sin ^{2} \theta \csc \theta\right] d \theta$
18. $\int \frac{\sec x+\cos x}{2 \cos x} d x$
(a) $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
(b) $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
(c) $\sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}$

